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Abstract

The Virtual Machine Placement (VMP) problem is a challenging optimization task that involves the assignment of virtual
machines to physical machines in a cloud computing environment. The placement of virtual machines can significantly affect
the use of resources in a cluster, with a subsequent impact on operational costs and the environment. In this paper, we present
an improved algorithm for VMP, based on Parallel Ant Colony Optimization (PACO), which makes effective use of parallelization
techniques and modern processor technologies. We achieve solution qualities that are comparable with or superior to those obtained
by other nature-inspired methods, with our parallel implementation obtaining a speed-up of up to 2002x over recent serial algorithms
in the literature. This allows us to rapidly find high-quality solutions that are close to the theoretical minimum number of Virtual
Machines.
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1. Introduction

Cloud computing [22] is an increasingly prevalent comput-
ing paradigm, in which on-demand computing services (such as
compute or storage) are provided, either privately or commer-
cially, as a service to remote users and organizations. As well
as providing the foundation for modern electronic commerce,
cloud computing is a key enabler for a number of recent devel-
opments, such as the Internet of Things [6], Edge Computing
[37], and Big Data Analytics [2], all of which, in turn, enable
important societal developments such as Smart Cities [47] and
Intelligent Transportation Systems [21]. However, data centres
now represent a significant proportion of global energy usage
(currently estimated at around 2%, and this is set to rise [19]).
There is, therefore, an urgent need to optimize the software in-
frastructure underpinning modern data centres.

Resource requirements are expressed in terms of a number
of Virtual Machine (VM) instances, each of which carries its
own overhead. A key benefit of cloud computing for users
is its scalability, which is derived from the ability to dynam-
ically increase and reduce resource usage depending on de-
mand. While this elasticity is beneficial for users, it presents
challenges for cloud computing providers. As demand changes
constantly, the assignment of VMs to servers (or Physical Ma-
chines, PMs) can quickly become inefficient, leading to sub-
optimal utilisation of servers. This can cause providers to use
more hardware resources than are necessary, which has both
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an economic and environmental impact. The solution to this is
virtual machine consolidation, which allocates currently in-use
VMs to as few PMs as possible (essentially “packing” them into
servers). This increases server utilisation and energy efficiency,
and lower power consumption equates to lower energy costs
for the host. This also incentivizes the efficient re-allocation
of servers to ensure that they operate in an efficient configura-
tion for a longer duration, which leads to further reductions in
energy usage.

A number of algorithms have been proposed to address this
problem; here, we focus on methods based on Ant Colony Op-
timization. Importantly, we focus on parallel Ant Colony Op-
timization, which takes advantage of modern multi-core hard-
ware to significantly reduce the time required to find satisfac-
tory solutions. We make use of the AVX2 instruction set, avail-
able on the vast majority of modern CPUs, to further reduce
execution time in an already parallelized approach.

The rest of the paper is organised as follows: In Section 2
we provide background to the Virtual Machine Placement prob-
lem and existing methods for its solution; in Section 3 we de-
scribe the Ant Colony Optimization method and our own im-
proved algorithm; in Section 4 we present the results of evalu-
ating our algorithm against competing techniques, and in Sec-
tion 5 we discuss our findings and suggest possible further work.

2. Background & Related Work

In this Section we first describe the Virtual Machine Place-
ment Problem and discuss a range of existing methods for its
solution.
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2.1. Virtual Machine Placement Problem

Hardware virtualization in cloud computing allows for many
separate machine instances to be created that are distinct from
the host machine on which they are running. These instances,
known as Virtual Machines (VMs), essentially act as completely
separate computers, distinct from other VMs running on the
same host. Each VM may have its own specific resource re-
quirements (in terms of memory, and so on), and thus occupies
a specific “footprint”. These VMs are managed by a hypervi-
sor running on the host server (also known as a Virtual Machine
Monitor, VMM) which creates, optimizes and monitors the per-
formance of VMs.

Many companies, such as Amazon (AWS) and Microsoft
(Azure), provide access to Virtual Machines hosted on their
own servers. Due to the sheer size of these operations, a sig-
nificant amount of hardware is required. In order to minimize,
as far as possible, the amount of costly physical infrastructure,
a process known as Virtual Machine Migration is often used to
move Virtual Machines from one Physical Machine to another
in a seamless fashion, without disruption for the user [12]. This
ability to migrate VMs therefore offers the possibility of opti-
mization of their placement on servers. The fundamental ques-
tion we address, therefore, is as follows: given a set of VMs,
each with a specific resource footprint, and a number of PMs
with individual capacities, what is the best allocation of VMs to
PMs, such that the number of PMs is minimised? For scenar-
ios where a small number of servers are available, determining
the most efficient allocation for a small number of VMs can be
trivial. However, services such as AWS have millions of users
and hundreds of thousands of servers.

Virtual Machine Placement (VMP) is an NP-hard problem
[40], in which the aim is to allocate Virtual Machines (VMs) to
Physical Machines (PMs) as efficiently as possible. While VM
features differ between variants of the problem, the two most
typical attributes are memory (RAM) and processing (CPU).
RAM requirements are generally measured in Gigabytes (GB),
while CPU requirements are generally measured in either pro-
cessor cores or MIPS (million instructions per second). Every
VM has its own specific requirement for each, which means it
occupies its own resource “footprint”. The aim of the problem
is to “legally” allocate every VM to a PM in such a way that
the number of PMs required is minimised (that is, this version
of the VMP is a variant of a bin packing problem). Here, we
focus on the static variant of the VMP problem, where we need
to allocate a fixed set of VMs to PMs.

Although the static variant of the VMP problem is relatively
limited in applicability (as, in reality, cloud computing repre-
sents a dynamic situation in which virtual machines are added
and removed at different times) it still offers a useful challenge,
with a number of recent solutions in the literature for the pur-
poses of comparison. Our focus here, and the key contribution
of the current paper, lies in the efficient solution of such prob-
lems using parallelized and vectorized ACO. This work repre-
sents an evolution of our earlier work on applying ACO to the
Travelling Salesman Problem (TSP) [35, 36], and future work
will adapt our methods to solve the dynamic version of VMP.

We note that the pheromone evaporation mechanism of ACO
could provide a suitable adaptation strategy for the dynamic
problem, which has recently been shown to be effective on the
dynamic version of the TSP [32].

2.1.1. Problem definition
We now formally define the variant of VMP that we con-

sider here. An instance of the VMP is defined by a set V of
virtual machines V = {Vi, i ∈ [1,NVM]} with CPU require-
ments and RAM requirements Creq

i ,Rreq
i ∀i ∈ [1,NVM], and a

set P of physical machines P = {P j, j ∈ [1,NPM]} with CPU
capacities and RAM capacities Ccap

j ,Rcap
j ∀ j ∈ [1,NPM]. A fea-

sible solution to an instance of the VMP is a mapping of the
indices of virtual machines i to physical machines j such that
∀ j,
∑

i Creq
i ≤ Ccap

j and
∑

i Rreq
i ≤ Rcap

j where the sums are taken
over the indices of all virtual machines i which are mapped to
the physical machine j. The optimization problem seeks to find
a feasible solution which maximizes the number of empty phys-
ical machines, which is equal to the cardinality of the set of
indices j which are not mapped from any virtual machines i.

An illustrative example of an instance of the static VMP
problem is shown in Figure 1, along with its solution. We have
an initially unbounded number of PMs, each with a fixed CPU
and RAM resource, and a number of VMs (VM1-5) to be allo-
cated to PMs such that the total resource requirement on each
PM does not exceed its capacity, and the number of PMs is
minimised (in this case, to three).

Figure 1: Instance of the Virtual Machine Placement problem, with arrows
showing the solution (i.e., the allocation of VMs to PMs). Virtual Machine
requests are efficiently allocated to Physical Machines

2.2. Existing Methods

As with many combinatorial optimisation problems, a wide
range of techniques exist to find solutions to VMP instances. As
well as heuristic-based approaches such as Next Fit, First Fit,
First Fit Decreasing (FFD) and Best Fit (BF) [13], more ad-
vanced optimization techniques have been successfully applied
to the VMP problem; these include Genetic Algorithms (GA)
[20, 33, 42], Particle Swarm Optimization [45], Q-Learning
[31] and Ant Colony Optimization (ACO) [3, 18, 20, 27].

A recently-published method for VMP, which provides one
of the comparison baselines for the work presented here, is the
IGA-POP genetic algorithm (GA) [1]. This frames the VMP as
a Variable-Sized Bin Packing Problem (VSBPP), a variant of
the Bin Packing Problem in which the container elements have
differing capacities. In IGA-POP, a solution encodes an order-
ing of VM assignments to PMs. The fitness function for this
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algorithm prioritises low power usage, and it performs compet-
itively in terms of solution quality against the BF and First-Fit
(FF) greedy algorithms, the Sine-Cosine Optimization Algo-
rithm (SCA) [34] and a generic GA. For this reason, we select
IGA-POP as being representative of the “evolutionary” algo-
rithm class of solvers for VMP.

Our own method is based on Ant Colony Optimization (ACO),
[15] which is an optimization metaheuristic modelled on the
foraging behaviour of ants [14]. When ants leave the nest to
look for food, they initially explore the local area; once food is
located by an ant, it returns to the nest. On the return journey,
the ant leaves a pheromone trail, which increases the probabil-
ity that other members of the colony will take that path to the
food source. As each ant follows a trail, it also lays its own trail,
strengthening the pheromone over time and causing more ants
to follow it, in a process of positive feedback reinforcement.

This phenomenon is abstractly replicated by the ACO algo-
rithm, with problem instances generally represented by graph
structures, and with multiple “ants” searching for a solution by
traversing its edges according to pheromone concentrations. As
an ant traverses a problem graph, it uses a weighted random
process to select its next move, in which solution components
with a better combination of pheromone and heuristic are more
likely to be selected. Pheromone “evaporates” over time, allow-
ing unproductive paths to be eventually removed (thus prevent-
ing premature convergence).

Feller et al. [18] presented an early application of ACO
to VMP. This treats VMP as a multi-dimensional bin-packing
problem (MDBP), with the bins being the Physical Machines,
and the items to be packed being the VMs. As reducing the
number of PMs is the most effective way of reducing energy
usage, the objective of the algorithm is to minimize the num-
ber of bins used. The algorithm fills bins (PMs) one-at-a-time,
with each bin being closed when no remaining VMs can fit in-
side. Pheromone is deposited on Item-Bin pairs, with VMs be-
ing linked to the specific PM to which they are allocated. The
heuristic is based on the total resource utilisation of the PM if
the current VM were to be assigned to it, and pheromone depo-
sition is based on the average utilisation of all utilised PMs. The
Feller ACO technique outperforms First Fit Decreasing (FFD)
in terms of energy usage, saving 4.1% on average. However,
execution time for the algorithm is significant, ranging from
37.46 seconds for 100 VMs to 2.01 hours for 600 VMs.

A more recent ACO-based VMP algorithm is OEMACS
[27]. This adds two Local Search procedures: an exchange pro-
cedure similar to a local search procedure used for Bin Packing
Problems [4], which swaps VMs between PMs in an attempt
to find a more efficient configuration, and an insertion proce-
dure, which attempts to remove a VM from one PM and insert
it into another. OEMACS outperforms [18] in terms of both
solution quality and execution time. We therefore compare our
ACO algorithm against OEMACS, as it stands as a representa-
tive modern ACO algorithm for the VMP.

To summarize, we select OEMACS and IGA-POP as rep-
resentative state of the art ACO and GA solvers for the VMP,
along with a standard heuristic, First-Fit.

3. Our ACO algorithm for VMP

3.1. Overview of ACO

As we base our algorithm on ACO, we now provide a brief
overview of its operation. The first ACO algorithm (Ant Sys-
tem) was described by [16]. Many variants and applications
of the algorithm have since been developed; however, the key
features of ACO, shared by all variants, are that the algorithm
uses a number of agents (ants) which independently construct
solutions guided by a global pheromone matrix data structure
(and, in some cases, a problem-specific heuristic). The repre-
sentation of a solution typically takes the form of a subset of
edges of a graph, and the solution construction phase of the al-
gorithm involves each ant iteratively traversing the graph, build-
ing a feasible solution by selecting from the available edges at
each step. Edges are selected using a random choice, weighted
by the pheromone and heuristic values associated with the avail-
able edges. The pheromone update phase of the algorithm asso-
ciates higher pheromone values with edges which are included
in objectively “good” solutions, and to evaporate pheromone
from older, less successful, solution components. In what fol-
lows, we base our algorithm on theMAX-MIN Ant System
(MMAS) ACO variant [41].

Due to the inherently distributed nature of ACO (many “ants”
effectively act independently, informed by their environment),
parallelizing the algorithm is a well-researched topic. Early im-
plementations of parallel ACO made use of distributed systems
[7, 10]. Later work on distributed ACO systems included the
use of agent-based systems [23, 24, 25, 26], decentralized al-
gorithms [28] and, most recently, desynchronized parallel ACO
has demonstrated scalability on up to 400 compute nodes [39].

The development of Nvidia’s Computed Unified Device Ar-
chitecture (CUDA) framework led to a significant number of
GPU-based implementations [8, 9, 38]. The CUDA framework
gives access to the powerful parallelization architecture offered
by GPUs for graphics processing, which may be utilises for
other purposes (this is known as General-Purpose computing
on Graphics Processing Units (GPGPU)). Before CUDA, dis-
tributed systems were the only realistic method of paralleliz-
ing an algorithm, but CUDA allows for parallelization to be
performed on a single machine. The rising thread count on
modern processors, along with the availability of Single In-
struction Multiple Data (SIMD) vector operations such as the
AVX512 instruction set on Intel Xeon Phi and Xeon proces-
sors, has also increased the viability of parallel ACO on CPUs
[11, 17, 29, 43, 44]. SIMD is a class of parallel computing in
which the same operation is performed on multiple data points
simultaneously, allowing multiple operations to be performed
in parallel. In the case of AVX512 and the earlier AVX2 instruc-
tion set, 16 and 8 operations respectively may be performed si-
multaneously. These instructions may be applied to code that
is already parallelized, essentially reducing the number of op-
erations required by up to a factor of 16, allowing for an even
deeper level of parallel processing.

While running ants in parallel across a graph seems like
a straightforward task, certain aspects of the ACO algorithm
make parallelization difficult. In particular, the fundamental
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roulette-wheel selection technique used by ACO, where differ-
ent paths are allocated a “slice” of a roulette wheel that is pro-
portional to their favourability, is not amenable to paralleliza-
tion. In order to overcome this issue, Cecilia et al. [8] de-
veloped a new data parallel approach to ACO edge selection,
known as I-Roulette. While the exact proportionality between
probability and edge weights is not fully maintained, I-Roulette
still accurately replicates the behaviour of Roulette Wheel se-
lection in a parallel-compatible manner. I-Roulette was later
adapted into vRoulette [29], which made use of the AVX512
vector instructions to further increase the efficiency of the algo-
rithm.

In what follows we describe an alternative ACO algorithm
for VMP which dramatically reduces run-time by harnessing
the techniques described above, along with modern processor
features.

3.2. Data structures and algorithm design

In this Section we describe our algorithm for Parallel Ant
Colony Optimization for Virtual Machine Placement (PACO-
VMP), which combines a standard ACO variant with existing
parallelization techniques and SIMD vector operations. Our
method is based on theMMAS variant of ACO, as this is the
version that is most amenable to parallelization (due to the ab-
sence of communication between ants during an iteration). We
have made complete reference code available online1. Our no-
tation is defined in Table 1, a high-level pseudocode descrip-
tion of the method is supplied in Algorithm 1, and a detailed
description of the algorithm is given in Figure 4.

When constructing a solution, ants visit each virtual ma-
chine in turn and allocate it to a physical machine. The graph
representation of the solution is therefore a complete bipartite
graph between the two sets of vertices representing the virtual
and physical machines respectively. Solution construction cor-
responds to the ants selecting NV M edges from this graph, with
one edge attached to each of the NV M vertices on one side of
the graph representing the virtual machines. The graph is illus-
trated schematically in Figure 2.

Figure 2: Schematic representation of the solution graph and the solution con-
struction process carried out by the ants. Edges represented by bold lines cor-
respond to edges in the solution, possible edges are in light grey.

The key data structures used by the algorithm are:

1https://github.com/jnpeake/PACO-VMP

1. The pheromone matrix, a square (NV M × NV M) matrix of
floating point numbers which holds the pheromone val-
ues τi j corresponding to placing two VMs, i and j in the
same PM in a solution.

2. An array of ant data structures, which each contain a rep-
resentation of a solution (an array of arrays of integers,
which lists the indices of the VMs assigned to each PM).

At the highest level of description, the algorithm proceeds as
shown in Algorithm 1; each phase of the algorithm is discussed
in detail in subsections which follow.

Algorithm 1 High-level description of proposed algorithm
Initialization Phase
for each Iteration do

for each Ant do
// Solution Construction
Randomize order of VM list
for each VM in VM list do

// allocate VM to PM
Calculate pheromone and heuristic for each PM
if placement feasible then

Place VM with weighted random selection
else

Allocate VM to PM with most available space
end if

end for
end for
Apply Local Search to iteration-best Ant
if Iteration-best solution is feasible then

Update Global Best Solution
end if
Pheromone Update

end for

3.2.1. Initialization Phase
In this phase, the parameters and structures required by the

algorithm are created and initialized. An important first step is
to ensure that any arrays used for vectorized computations are
padded correctly, which prevents errors when they are loaded
into vectors. As our implementation uses the Intel AVX2 in-
structions, which operate on 8 32-bit values at a time, the size
of each array must be a multiple of 8. The arrays also need to be
aligned in memory in order to be correctly loaded into AVX2
vectors. The pheromone matrix is a matrix of size NVM ×NVM ,
with NVM being the number of Virtual Machines in the problem
instance. The values of the pheromone matrix are initially set to
τ0 = 1/NPM, where NPM is the number of Physical Machines.
In this phase we also set the value of the MMAS constant a
(see Equation 11), which is later used to determine the maxi-
mum and minimum pheromone values. The number of PMs is
initially set to be equal to the number of VMs.

3.2.2. Solution Construction
The first step of the solution construction phase is to ran-

domly shuffle the VMs. This happens at the beginning of each
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iteration in order to prevent VMs being allocated to the same
PM purely due to their position in the array. OpenMP is used
to allocate each ant’s construction process to a separate thread.
As each ant only reads from global pheromone memory dur-
ing the construction phase, and does not write to memory, syn-
chronisation is not required. During the construction phase, the
ants loop through every VM and allocate it to a PM, unless the
current VM does not fit in any remaining PM. Any VMs left
un-allocated at the end of the loop are then allocated to the PM
with the most available capacity, creating an infeasible solution.
A Local Search procedure, fully described in a later section, is
then applied to the solution in an attempt to make it feasible.

Figure 3: A demonstration of how the vRoulette-1 technique combines the
heuristic and pheromone values of a PM with a random number between 0
and 1. AVX2 instructions allows operations to be carried out on each Vector
lane (numbered 0-7) simultaneously.

The selection procedure used to allocate VMs is based on
the vRoulette-1 technique developed by Lloyd & Amos [29].
This is illustrated in Figure 3, which shows how the Heuristic
and Pheromone values (which we describe in detail later) of the
PM in each vector lane are combined with a random number be-
tween 0 and 1. This is then multiplied by a Tabu value, which
is set to 0 or 1 (the value is only set to 0 in the instance that the
“PM” in that lane is actually just a placeholder used to pad the
PM list to a multiple of 8), and then masked by vectors (denoted
MaxCPUMask and MaxRAMMask) that filter out any PMs that
do not have enough available capacity for the current VM. This
is done on a vector-by-vector basis, with 8 PMs being processed
for selection in parallel. The 8 current PM values are compared
lane-by-lane with a vector of the highest PM values in the cur-
rent selection process. Once every PM has been processed, a
parallel reduction (with the max operator) is carried out on this
vector and the PM corresponding to the highest value is then
assigned to the current VM. If the highest value is lower than
0, this indicates that no PMs had enough capacity available for
the current VM, and the VM is added to the unassigned list, to
be allocated once the solution construction procedure has been
completed.

Relating Figure 3 to the notation of Table 1, the vector of
heuristic values is populated using the values ηi j . . . ηi, j+8 for
some PM index j. The pheromone vector contains τi j . . . τi, j+8,
and the final vector produced, labelled ‘total’ contains Wi j . . .Wi, j+8.

While the original vRoulette-1 implementation made use of
the AVX512 instruction set, which allows for 16-wide vectors
and features additional instructions compared to AVX2, it is

not currently as widely-available as the AVX2 instruction set,
which is available on most Intel CPUs released since 2013, and
most AMD CPUs released since 2015. For the implementation
evaluated here, we used AVX2.

3.2.3. Heuristic & Pheromone Definition
As with any ACO implementation, the definition of the pheromone

and heuristic values is crucial for the consistent construction
of good-quality solutions. The heuristic is a problem-specific
value which indicates the favourability of assigning a VM to a
PM. The definition of the heuristic value can differ significantly,
even within ACO implementations for the same problem. A
key feature of the process for calculating the heuristic value for
VMP is the need for a dynamically calculated heuristic, which
differs depending on the current state of the PM that is being
assigned to. This requires the heuristic to be calculated at ev-
ery step of the solution for every VM, which increases the solu-
tion time compared to static heuristic computation for problems
such as Traveling Salesman.

Our heuristic definition is designed to ensure that the lowest
possible number of VMs is used, by prioritising both resource
utilisation balance and total resource utilisation. Resource bal-
ancing attempts to keep the available RAM and CPU levels on
a PM as even as possible. The aim is to prevent PMs exhausting
one resource capacity while still having a large available capac-
ity on the other resource. The prioritisation of total utilisation
makes it more likely that an ant will allocate the current VM to
a PM that already contains other VMs.

First, we define fC and fR, the fractional usage of CPU and
RAM of PM j if VM i were added to it, as

fC =
Cused

j + Creq
i

Ccap
j

(1)

and

fR =
Rused

j + Rreq
i

Rcap
j

. (2)

Here, Cused
j and Rused

j are, respectively, the current CPU and
RAM usage of physical machine j, Creq

i and Rreq
i are the CPU

and RAM requirements of virtual machine i, and Ccap
j and Rcap

j
are the CPU and RAM capacities of physical machine j. We
then define the heuristic value, ηi j, associated with placement
of virtual machine i on physical machine j as

ηi j =
1 − | fC − fR|
1 + fC + fR

(3)

Implementations of ACO for VMP generally use one of two
definitions of “pheromone trail”; the first defines the trail as
connecting VMs and the PMs to which they are allocated, and
the second defines trails as being connections between VMs that
are allocated to the same PM (meaning that VMs are more
likely to be allocated to a PM alongside VMs that they have
previously sat alongside in good solutions). Here, we use the
second definition, where the pheromone trail associates VMs
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with other VMs. The pheromone distributed is based on solu-
tion quality, which in our case is measured in terms of energy
consumption.

As the selection process of our algorithm attempts to allo-
cate VMs to PMs, we are unable to load pheromone information
directly from the matrix, as pheromone is distributed between
VMs rather than between VM and PM. Instead, we calculate
the mean value of pheromone linking the current VM and the
VMs that are currently allocated to the PM under evaluation
(the amount of pheromone between VM and PM is initially set
to τ0, and remains at that level until a VM is added to the PM).

Therefore, the pheromone associated with a physical ma-
chine j when placing a virtual machine i is given by

Ti j =

τ0, if N j
V M = 0

1
N j

V M

∑
k τik, otherwise (4)

where N j
V M is the number of VMs already assigned to PM j,

and the sum is taken over all VMs k which are assigned to PM
j.

Finally, the weight associated with a particular choice of
PM, j, for a given VM, i, during the solution construction phase
is determined by combining the pheromone and heuristic values
according to

Wi j = Tα
i jη

β
i j (5)

where α and β are parameters controlling the relative influence
of pheromone and heuristic information. The choice of PM is
then made with probability p, which is proportional to Wi j.

3.2.4. Local Search
Local Search is a procedure that takes a candidate solution

generated by an optimisation algorithm and applies small per-
turbations to it in order to find a local minimum with respect
to some neighbourhood. The term “Local Search” refers to
a vast array of usually problem-specific techniques for mak-
ing these small changes. Local Search techniques are widely
used in conjunction with ACO to good effect, and they are es-
sential for creating solutions that are optimal or near-optimal.
Local Search takes place after the solution construction phase,
once the iteration-best solution has been determined. Following
[27], we perform local search only on the iteration-best solu-
tion. However, we note (from our experimental results) that the
time taken by the local search phase was relatively short (less
than 1% of execution time on our largest instances), and that
local search could (in principle) be parallelized so that each ant
performs this step on its own thread. We followed [27] for a fair
comparison, but note that in future work we may obtain further
improved solution performance by conducting local search on
all candidate solutions.

Our Local Search is based on a technique developed by
Alvim et al. [4] for the Bin Packing Problem, and also utilised
by Liu et al. [27] for the VMP. In this algorithm, after each
solution is found, one bin is destroyed. If a subsequent solution
is then able to successfully fit all items in the remaining bins,
it is considered feasible. However, if no feasible solution can

Table 1: List of symbols and notations used in this paper. Model Quantities
refers to symbols used in the definition of the model for the problem, ACO
quantities are values calculated and used during the ACO iterations, while ACO
Parameters are fixed values throughout an ACO run.

Model Quantities
Ccap

j Total CPU capacity on PM j
Creq

i CPU requirement of VM i
Cused

j Current CPU usage on PM j
fC CPU usage ratio for current PM
fR RAM usage ratio for current PM
Ns The number of PMs ants are able to use
Ngb The number of PMs used in S gb

Nib The number of PMs used in S ib

NPM The number of PMs in the current instance
Nsol The number of PMs used in a solution (all algorithms)
NVM The number of VMs in the current instance
P Power usage of current solution
Pgb Power usage of the global best solution
Pib Power usage of the iteration best solution
Pidle

j Idle power usage of PM j
Pmax

j Maximum power usage of PM j
Rcap

j Total RAM capacity on PM j
Rreq

i RAM requirement of VM i
Rused

j Current RAM usage on PM j
S gb The global best solution
S ib The best solution from the current iteration

ACO Quantities
ηi j Heuristic value between VM i and PM j
icur The current VM
jcur The current PM
k Current iteration number
N j

V M Number of VMs assigned to PM j
τi j Pheromone value between VMs i and j
τ0 The initial pheromone value
τmax Maximum pheromone value
τmin Minimum pheromone value
Ti j Averaged pheromone value between VM i and PM j
Wi j Weight associated with PM j for VM i

ACO Parameters
α Pheromone influence
β Heuristic influence
ρ Pheromone decay rate
a MMAS constant value
kmax Maximum number of iterations permitted
KP Scaling constant for power usage in pheromone calculation

be found, the local search technique is applied. There are two
phases of our technique, the swap phase and the insertion phase.
Any PM that has been allocated more VMs than it has capacity
for is marked as overloaded. In the swap phase an overloaded
PM is compared with every non-overloaded PM, and the algo-
rithm attempts to swap each VM in the overloaded PM with
each VM in the non-overloaded PM. This continues until either
a successful swap takes place, or every non-overloaded PM has
been compared to the overloaded PM. Regardless of the out-
come, the process is carried out again for the next PM, and this
continues until every overloaded PM has been compared. If
the swap phase is unable to successfully find a feasible solu-
tion, the insertion phase is then performed. In this phase, each
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overloaded PM attempts to allocate each of its VMs to a non-
overloaded PM. While this is far less likely to produce positive
results than the swap phase, it is still able to occasionally make
progress when the swap phase cannot.

3.2.5. Pheromone Update
The final phase of our ACO algorithm is the deposition of

pheromone. As our algorithm is based on the MMAS ACO
variant, pheromone is deposited only by the global-best ant. As
mentioned previously, pheromone is distributed on edges con-
necting VMs allocated to the same PM. The pheromone matrix
is updated using

τi j ← τi j +
KP

P
(6)

where KP is a constant, for all pairs of VMs i, j which are allo-
cated to the same PM in the global best solution, and where P is
the power usage of the solution. In our runs we used KP = 365.
In practice, this is a constant which scales power usage into the
typical range of values for τmin and τmax, defined below. The
actual value of this parameter may be varied depending on the
units used for power in the instance definition, and can be con-
sidered a hyper-parameter of the method.

The power usage is defined as

P =

NPM∑
j=1

(Pmax
j − Pidle

j )
Cused

j

Ccap
j

+ Pidle
j

 (7)

where NPM is the number of PMs in the current instance and
Pmax

j and Pidle
j are the maximum and idle power usage of physi-

cal machine j respectively. We choose a definition of pheromone
based on power usage, as this reflects the positive impact of
a lower number of PMs while still measuring differences be-
tween solutions with the same number of PMs used. The global
amount of pheromone then decays by a static amount, con-
trolled by the parameter ρ,

τi j ← τi j(1 − ρ) ∀i, j ∈ [1,NV M]. (8)

The choice of value of ρ will be discussed in Section 4.
MMAS utilises a clamping procedure to prevent stagna-

tion, by restricting the level of pheromone to be between max-
imum and minimum values. The maximum and minimum val-
ues are defined as

τmax =
1

ρNglobal
best

(9)

τmin = τmax
2(1 − a)

(NVM + 1)a
(10)

where NVM is the number of VMs in the current instance, ρ is
the evaporation parameter and

a = exp(ln(0.05)/NVM). (11)

This clamping is applied to the whole matrix after evaporation.

Figure 4: A flow chart detailing the PACO-VMP algorithm. Section A, between
the yellow diamonds, is executed in parallel for each ant.

4. Experimental Evaluation

We investigate the performance of our algorithm by com-
paring it with an implementation of the OEMACS algorithm
(which is an ACO-based method that generally out-performs
conventional heuristics and evolutionary algorithms for this prob-
lem [27]), and a state-of-the-art genetic algorithm, IGA-POP
[1]. Code for OEMACS is publicly available2. All algorithms
were implemented in C++, and all tests were carried out on a
machine with an Intel R© Xeon E5-2640 v4 processor with 20
cores running at a base frequency of 2.4 GHz and a maximum
frequency of 3.4 GHz. Code was compiled using the GNU
C++ compiler (g++), with O2 optimization enabled. The initial
comparative tests compare a serial implementation of PACO-
VMP with the serial algorithms OEMACS and IGA-POP, with
the aim of comparing the quality of solutions obtained. Two
variants of IGA-POP are used: the first, referred to as GA1, uses
the fitness function also used by PACO-VMP and OEMACS;

2https://github.com/Budding0828/OEMACS
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the second, referred to as GA2, uses a slightly modified version
of the fitness function used in the initial IGA-POP experiments
[1]. Finally, to evaluate the impact of our OpenMP paralleliza-
tion, we also run a parallelized PACO-VMP using OpenMP,
assigning one ant to each of our 20 cores. While the execution
time differs, solution quality is identical to the serial version.

4.1. Problem instances

All problem instances used in our experiments were ran-
domly generated. For each instance, the initial number of Phys-
ical Machines is set to be equal to the number of Virtual Ma-
chines. Our dataset consists of three sets of 600 VMP instances,
each further split into 6 subsets of 100 instances with 100, 200,
300, 400, 500 and 1000 VMs. The three sets (A, B and C) are
described in the following subsections, and differ in terms of
either the inclusion of bottlenecks in one or other resource, or
the homogeneity of the physical machines in the instance setup.
One run is performed using each instance. We use one run per
instance with a larger number of instances, rather than multiple
runs on a smaller number of instances; a proof in [5] shows that
given a budget of N runs, selecting K instances and perform-
ing n runs on each with N = Kn is a sub-optimal choice, and
that the best statistical estimate of algorithm performance is ob-
tained from a single run on each of N independently selected
instances (contrary to popular belief).

4.1.1. Instance Set A: Homogeneous Environment
Set A is designed to evaluate the performance of the algo-

rithms in a straightforward scenario where the PMs are identi-
cal and the demands of the VMs are fairly evenly divided be-
tween RAM and CPU. This set consists of 600 VMP instances
equally divided between 100, 200, 300, 400, 500 and 1000 VM
instances. This dataset is similar to the Set A data used by Liu
et al. [27] in evaluating OEMACS, which was initially cre-
ated to benchmark the Reordering Grouping Genetic Algorithm
(RGGA) [46]; however, this data is no longer publicly avail-
able. In comparison to this dataset, we used a larger number of
smaller instances.

The VM requirements for this instance set are randomly
generated in ranges of [1,128] for CPU and [1,100] for RAM.
Each PM has a capacity of 500 for both CPU and RAM, leading
to slightly higher average CPU utilisation compared to RAM
utilisation (but still close to 1:1). As these instances are ran-
domly generated, there is no known optimum, but a lower limit
to the number of PMs used in the solution, Nmin, may be calcu-
lated:

Nmin = max


∑NVM

j=1 Creq
j

Ccap
i

,

∑NVM
j=1 Rreq

j

Rcap
i

 (12)

where i is the index of any physical machine; as the servers
in Instance Set A are homogeneous, it does not matter which
physical machine is used to evaluate this quantity.

4.1.2. Instance Set B: Homogenous Environment with Bottle-
neck

Set B introduces a bottleneck resource to the problem in-
stances, evaluating the performance of the algorithms in a slightly
more complicated scenario which will lead to more overloaded
servers. As with the previous instance set, Set B consists of 600
VMP instances equally divided between 100, 200, 300, 400,
500 and 1000 VM instances. VM requirements are randomly
generated, in the range [1-4] for CPU (measured in cores) and
[1-8] for RAM (measured in GB). PM capacity is 16 cores for
CPU and 32GB for RAM. As the probability of a 4 core VM
requirement is higher than the probability of an 8GB RAM re-
quirement, CPU is the bottleneck resource. As with Set A, these
instances have no known optimum, and a lower limit is calcu-
lated using the same formula.

4.1.3. Instance Set C: Heterogeneous Environment with Bottle-
neck

Set C further complicates the problem instances by intro-
ducing non-identical servers, simulating a scenario in which a
cloud host has multiple server types. We define two types of
server, A and B. Server type A has a CPU capacity of 16 cores
and a RAM capacity of 32GB. Server type B has a CPU capac-
ity of 32 cores and a RAM capacity of 64GB. However, type B
servers only make up 10% of the total PMs in each problem in-
stance, meaning that VMs will have to use both types of servers.
This will evaluate the ability of the algorithms to prioritise the
high capacity servers while still allocating the VMs efficiently.
The VM requirements are in the range [1,8] for CPU and [1,32]
for RAM, meaning that the bottleneck resource in this case is
RAM. Set C utilises the same instance sizes as the previous sets.

Due to the heterogenous servers in this instance set, an al-
ternative formula is required for calculating the lower limit to
the number of PMs:

Nmin = NB + max


∑NVM

j=1 Creq
j − NBCcap

B

Ccap
A

,

∑NVM
j=1 Rreq

j − NBRcap
B

Rcap
A


(13)

where NB is the number of type B servers, Ccap
A and Ccap

B are
the CPU capacities of type A and B servers respectively, and
Rcap

A and Rcap
B are the RAM capacities of type A and B servers

respectively.

4.2. Experimental configuration
For each experiment we use 20 ants for PACO-VMP, as this

allows one ant to be allocated to each core available on our
hardware in the OpenMP-enabled variant. For the ACO param-
eters used by PACO-VMP, we select values of ρ = 0.8, α =

1, β = 6 on the basis of tuning experiments on a small sam-
ple of 1000 VM instances (although we found the performance
was generally insensitive to these parameters). For OEMACS
we use the default values as specified in [27]. Both PACO-VMP
and OEMACS are run for 50 iterations. We chose this value for
fair comparison with the results in [27], which used this number
of iterations, although this is a relatively small number of iter-
ations for ACO. However, in practice we find that the solutions

8



do converge within this limit (see Section 4.4), but note that it
may be possible to find better solutions by running over more
iterations and different values of the algorithm parameters. For
GA1 and GA2, we use the parameters specified in [1]; 200 iter-
ations and a population size of the number of PMs multiplied by
4. We compare these results against the First Fit (FF) algorithm
in order to provide a baseline greedy algorithm implementation.
FF was selected over the more widely-used FFD algorithm due
to it obtaining better results on our datasets. It should be noted
that the solution construction time for FF is near-instantaneous
for all instance sizes, and has therefore been omitted from all
execution time plots.

4.3. Results
We compare the performance of the algorithms against two

metrics, solution quality and execution time. We measure so-
lution quality as the number of physical machines expressed as
a percentage excess over the minimum number possible for the
instance, Nmin, i.e. 100(Nsol/Nmin−1), where Nsol is the number
of non-empty physical machines in a solution. Execution time
is measured as wall clock time on a machine which is otherwise
idle apart from the experimental run.

The results for instance Set A in terms of solution quality
are shown in Figure 5. FF shows good results throughout, im-
proving as the problem instances get larger, which indicates that
it is fairly straightforward for a greedy solver to create good-
quality solutions for the non-bottlenecked version of the VMP
problem. In all but one instance, OEMACS is able to match
or exceed the solutions created by FF. Likewise, PACO-VMP
outperforms or matches OEMACS on 5 sizes of instances, in-
cluding the largest instances. We note that the PACO-VMP
algorithm utilises the FF result as its initial best tour, so it is
not able to find worse tours than FF. A distinction between the
results of set A and our other instance sets is that FF is com-
petitive with the two ACO algorithms. For our other instance
sets this is not the case, but as the non-bottlenecked problem
is fairly straightforward, it allows FF to find good quality so-
lutions. GA2 also performs well on this dataset, outperforming
PACO-VMP on all but a single dataset. On the other hand, GA1
struggles, remaining moderately competitive for the smaller in-
stances, but performing dramatically worse on the 400, 500 and
1000 VM instances.

Execution time results for instance Set A are shown in Fig-
ure 6. It is clear that PACO-VMP has a significant advantage
over OEMACS when it comes to execution time, beginning at
around 1 order of magnitude for the size 100 instances, and
increasing to an advantage of around 3 orders of magnitude for
the 1000 VM instance sets. An even larger advantage is demon-
strated over the two IGA-POP algorithms, beginning at around
2 orders of magnitude for the 100 VM instances and increasing
to around 3 orders of magnitude for the 1000 VM instances.
Interestingly, despite beginning with a sizeable time advantage
over IGA-POP, OEMACS performs similarly to GA1 for the
1000 VM instance set. The gap between the sequential and par-
allelized versions of PACO-VMP grows from a speedup of 2.2×
for the 100 VM instances, to a speedup of 3.47× for 1000 VM
instances.

Figure 5: Solution difference measured as percentage over theoretical optimum
for PACO-VMP, OEMACS, GA1, GA2 and FF for instance set A.

Unlike instance Set A, the results for instance Set B (shown
in Figure 7) reveal a clear difference between PACO-VMP and
OEMACS. FF’s poor results also indicate that a greedy solver
has more difficulty in finding a good solution for the bottle-
necked VMP than for the non-bottlenecked variant. While OEMACS
significantly outperforms FF, PACO-VMP outperforms it for
every problem size, finding solutions that range from 1%-2%
closer to the theoretical lower limit. Additionally, solution qual-
ity is actually worse for the size 1000 instances with OEMACS,
whereas PACO-VMP continues to improve. In contrast to Set
A, GA1 performs very well in this bottle-necked scenario, with
PACO-VMP returning better results for the 100 VM instances
but then returning very slightly worse results for the larger in-
stances. Conversely, GA2 performs poorly, initially returning
similar results to OEMACS before worsening on the larger in-
stances, and even being outperformed by FF for the 1000 VM
instances.

In terms of execution time (displayed in Figure 8), the re-
sults for PACO-VMP are near-identical to the results for in-
stance Set A, demonstrating that the bottleneck leads to no addi-
tional execution time. This is also the case for OEMACS, which
also achieves near-identical execution times to the instance set
A results. The execution time advantage held by PACO-VMP
is maintained, with OEMACS once again losing the advan-
tage it holds over IGA-POP as the solution size increases. The
difference between sequential and parallel PACO-VMP is also
near-identical to instance Set A, though the speedup increase is
slightly smaller (from 2.2× to 3.27×).

The results shown in Figure 9 indicate that FF performs
very poorly on instance Set C, with the heterogeneous servers
causing issues for the greedy technique. OEMACS significantly
outperforms FF once again, but is itself outperformed by PACO-
VMP, with solution quality improvement ranging from 5% for
100 VM instances to 10% for 1000 VM instances. While
OEMACS performs significantly worse on instance Set C than
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Figure 6: Average time to solve (seconds) for 100 instances of a given instance
size for PACO-VMP, OEMACS, GA1 and GA2 for instance set A.

on the other sets, PACO-VMP is able to capably solve the het-
erogeneous instances. As with instance Set B, while OEMACS
begins to return worse solution qualities for the size 1000 in-
stances, PACO-VMP continues to improve as the instance size
increases. The performance of the GA variants is also con-
sistent with results on Set B, with GA1 slightly outperforming
PACO-VMP in all but one instance size, and GA2 performing
poorly, showing even poorer results on instance Set C.

Execution times for instance Set C (Figure 10) are similar to
the other instance sets, with the execution time of PACO-VMP
being near identical. However, OEMACS takes slightly longer
to solve the instances in Set C, further increasing the execution
time advantage held by PACO-VMP. Additionally, the execu-
tion time of OEMACS is now closer to the time of GA2 than
GA1 for 1000 VM instances, emphasising the increased diffi-
culty that OEMACS has when trying to solve the bottlenecked,
homogeneous problem. As with the previous instance sets, the
time difference between the sequential and parallel PACO-VMP
increases slightly as the instance sizes increase, from 2.6× to
3.78×.

4.4. Discussion

Through the use of parallelization and vectorization tech-
niques, we have demonstrated a significant execution time re-
duction for our ACO-based algorithm for VMP, demonstrated
on a wide range of different problem instance sets that repre-
sent three realistic Cloud Computing scenarios. PACO-VMP
outperforms OEMACS in each instance set; very slightly on
Set A, and significantly on Sets B and C. While it is matched
by GA1 on Set B and C, it performs significantly better on in-
stance Set A. The opposite is true of GA2, which outperforms
PACO-VMP on Set A, but significantly underperforms on Sets
B and C. This consistency demonstrates the versatility of ACO
compared to IGA-POP; while IGA-POP performs well, it re-
quires two separate fitness functions in order to match PACO-

Figure 7: Solution difference measured in percentage over theoretical optimum
for PACO-VMP, OEMACS, GA1, GA2 and FF for instance set B.

VMP. Further analysis of the IGA-POP results reveals that the
issue stems from the tendency of the algorithm to assign VMs
to empty PMs even when currently used PMs have enough ca-
pacity remaining, which happens regardless of fitness function.
Both PACO-VMP and OEMACS enforce a limit on the num-
ber of PMs that can be used (the previous best number of PMs)
which prevents this behaviour. Additionally, it is worth nothing
that despite a 10x increase in instance size across our experi-
ments, the quality of the solutions produced by PACO-VMP re-
mains consistent. The percentages above the lower limit of PM
utilization decrease with each increase in instance size, which
(in terms of raw numbers) indicates a fairly consistent number
of PMs over the minimum. This suggests that our implemen-
tation could still produce good results for even larger VMP in-
stances. This is an advantage over OEMACS, where solution
quality degrades for size 1000 instances, a trend which would
potentially continue as instance sizes increase.

The main focus of PACO-VMP is to improve execution
time, and it succeeds at this objective. While PACO-VMP and
OEMACS use similar pheromone definitions and local search
techniques, PACO-VMP produces better results, both in terms
of execution time and solution quality. This may be due partly
to the choice of MMAS algorithm over ACS, and also ex-
plained by differences in selection probabilities due to the use of
independent roulette. It has been shown [30] that independent
roulette algorithms (such as vRoulette) tend to make greedier
selections than the traditional roulette wheel algorithm, which
may be a factor explaining the different solution qualities found
between PACO-VMP and OEMACS. Clearly the areas in which
PACO-VMP and OEMACS differ are significant in terms of ex-
ecution time, as PACO-VMP has a time complexity of O(n2),
whereas OEMACS is, experimentally, closer to O(n4). The
main contributing factor to this is the probability calculation;
whereas PACO-VMP uses the resource wastage formula as given
in Formula 1 as the heuristic value, OEMACS uses a much
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Table 2: Solution quality results of our experiments on FF, OEMACS, GA and PACO-VMP. Entries in the Set column represent the 100 instances of the specified
size from the specific instance set. Solution Quality is the average percentage over the theoretical minimum for all 100 problem instances for each size within each
set with values in bold being the best result, on the condition that it is significantly different when results are analysed with the Wilcoxon signed-rank test. Errors
quoted are the standard deviation over the 100 instances in each set.

Solution Quality (%)
Set FF OEMACS GA1 GA2 PACO

A100 10.3 ± 4.0 8.98 ± 2.76 8.80 ± 2.42 8.54 ± 1.92 8.25 ± 3.13
A200 5.03 ± 1.82 4.71 ± 1.60 5.13 ± 2.23 4.4 ± 1.31 4.47 ± 1.46
A300 3.69 ± 1.33 3.26 ± 1.15 4.21 ± 2.45 2.92 ± 0.858 3.32 ± 1.24
A400 2.98 ± 1.00 2.78 ± 0.98 4.78 ± 2.78 2.46 ± 1.04 2.78 ± 1.01
A500 2.58 ± 0.75 2.39 ± 0.78 5.54 ± 3.57 1.92 ± 0.672 2.42 ± 0.81

A1000 1.58 ± 0.31 1.96 ± 0.39 11.3 ± 4.2 1.26 ± 0.479 1.58 ± 0.31
B100 16.0 ± 3.7 8.24 ± 3.33 6.49 ± 1.41 7.75 ± 5.57 6.24 ± 1.90
B200 12.7 ± 2.2 5.05 ± 2.31 3.01 ± 1.02 4.78 ± 4.11 3.08 ± 1.04
B300 11.5 ± 1.5 3.72 ± 1.35 2.05 ± 0.47 5.36 ± 4.12 2.11 ± 0.62
B400 11.0 ± 1.4 3.47 ± 1.24 1.64 ± 0.384 6.77 ± 4.51 1.69 ± 0.41
B500 10.4 ± 1.1 2.89 ± 1.06 1.25 ± 0.35 6.30 ± 3.88 1.37 ± 0.52

B1000 9.83 ± 0.72 2.82 ± 0.68 0.79 ± 0.29 11.4 ± 4.02 0.91 ± 0.32
C100 34.8 ± 14.1 13.7 ± 4.7 6.96 ± 2.29 23.9 ± 7.79 7.67 ± 2.89
C200 31.6 ± 10.5 11.9 ± 2.6 5.03 ± 1.18 31.4 ± 6.25 6.10 ± 1.46
C300 32.1 ± 9.4 11.7 ± 2.4 4.46 ± 0.97 37.2 ± 6.56 5.39 ± 1.09
C400 31.0 ± 7.6 12.1 ± 2.4 4.07 ± 0.84 41.3 ± 5.4 4.66 ± 0.86
C500 29.2 ± 6.7 12.0 ± 2.0 3.93 ± 0.61 43.0 ± 4.45 4.44 ± 0.62

C1000 26.3 ± 5.2 12.8 ± 1.5 3.7 ± 0.48 54.5 ± 3.67 3.62 ± 0.32

Figure 8: Average time to solve (seconds) for 100 instances of a given instance
size for PACO-VMP, OEMACS, GA1 and GA2 for instance set B.

more complex formula that includes resource wastage, but also
has extra sums over the VMs in both the numerator and denom-
inator of the formula. Experimentally, the time complexity of
the IGA-POP variants is approximately O(n3).

We summarize our results in Tables 2 and 3. These show
results for solution quality and execution time; for the solution
quality results we indicate which results are statistically sig-
nificant. The results of each algorithm on each instance of a

Figure 9: Solution difference measured in percentage over theoretical optimum
for PACO-VMP, OEMACS, GA1 and GA2 and FF for instance set C.

given size can be paired, and compared to each other using the
Wilcoxon signed-rank test (a non-parametric test which can be
used to compare paired sets of readings). Since we perform
an all-vs-all comparison of three tests (all possible pairs of al-
gorithms) we apply the Bonferroni correction, and divide the
significance threshold by the number of tests (in this case 3).
Bold values in the table show solution quality values that are
significantly better than the other four algorithms, using a sig-
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Table 3: Execution time results from our experiments on OEMACS, GA and PACO-VMP. Entries in the Set column represent the 100 instances of the specified size
from the specific instance set. Execution Time is the average time per run in seconds for all 100 problem instances for each size within each set. Errors quoted are
the standard deviation over the 100 instances in each set.

Execution Time (seconds)
Set OEMACS GA1 GA2 PACO(S) PACO(P)

A100 0.9364 ± 0.0655 9.098 ± 0.166 15.05 ± 0.27 0.1246 ± 0.0217 0.05473 ± 0.00447
A200 12.22 ± 0.60 60.23 ± 0.57 107.9 ± 3.2 0.4234 ± 0.0596 0.1542 ± 0.0052
A300 51.81 ± 1.60 194.4 ± 1.9 354.3 ± 6.4 0.8922 ± 0.0772 0.2653 ± 0.0029
A400 158.8 ± 4.4 440.0 ± 3.8 817.7 ± 4.1 1.528 ± 0.099 0.4989 ± 0.0133
A500 369.8 ± 8.7 832.8 ± 6.0 1575 ± 9 2.387 ± 0.117 0.7591 ± 0.0158

A1000 5451 ± 233 5711 ± 200 12120 ± 310 10.37 ± 0.62 2.986 ± 0.476
B100 1.082 ± 0.116 9.044 ± 0.164 15.32 ± 0.19 0.1211 ± 0.0202 0.05445 ± 0.00463
B200 14.14 ± 0.59 59.15 ± 0.54 109.2 ± 3.1 0.4228 ± 0.0595 0.1544 ± 0.0045
B300 58.75 ± 1.97 189.7 ± 1.6 358.6 ± 3.8 0.9016 ± 0.0871 0.266 ± 0.003
B400 181.1 ± 5.7 426.2 ± 2.4 829.1 ± 8.0 1.514 ± 0.094 0.4988 ± 0.0105
B500 414.8 ± 6.6 805.4 ± 4.4 1596 ± 22 2.351 ± 0.114 0.7561 ± 0.0137

B1000 6080 ± 208 5547 ± 190 12190 ± 280 9.594 ± 0.506 2.904 ± 0.426
C100 1.646 ± 0.242 9.733 ± 0.220 16.98 ± 0.30 0.1349 ± 0.0232 0.0556 ± 0.0049
C200 22.14 ± 3.00 63.66 ± 0.95 116.7 ± 2.6 0.4644 ± 0.0514 0.1576 ± 0.0048
C300 88.56 ± 9.21 205.0 ± 3.1 383.7 ± 7.1 0.9796 ± 0.0841 0.2742 ± 0.0037
C400 270.3 ± 23.0 456.8 ± 4.9 874.7 ± 14.7 1.663 ± 0.0968 0.5112 ± 0.0068
C500 633.0 ± 40.0 858.4 ± 8.0 1665 ± 20 2.623 ± 0.140 0.7709 ± 0.0212

C1000 8874 ± 509 5754 ± 195 12490 ± 430 10.69 ± 0.57 2.874 ± 0.486

Figure 10: Average time to solve (seconds) for 100 instances of a given instance
size for PACO-VMP, OEMACS, GA1 and GA2 for instance set C.

nificance threshold of 0.002 (that is, 0.01 after application of
the Bonferroni correction).

In general, one of the two GA versions tends to produce the
best solutions; however, although the differences are in many
cases statistically significant, the magnitude of the effect is small.
For example, in the case of the A1000 instances, a comparison
between GA2 and PACO shows that - out of the 100 trials - GA2
is superior for 46 instances, whereas ACO is superior for 3, with
51 ties. Although this is a statistically highly significant differ-

ence, the magnitude of the difference is only 0.32% in terms
of solution quality. This demonstrates that the experiments are
very sensitive in detecting significant, but small, differences in
performance.

Qualitatively, the results show that one of the two GAs gen-
erally performs the best for any set of instances, but this is often
accompanied by the other GA performing the worst. Since we
used the GA with the recommended parameters for the popu-
lation size and number of generations, this performance also
comes at a significant cost; for example in the 1000 VM in-
stances, GA1 and GA2 perform 4000 evaluations per gener-
ation for 200 generations, compared to 20 evaluations for 50
iterations in PACO. Furthermore, the difference in performance
between the two cost functions is very clear; using the orig-
inal cost function proposed by [1] leads to poor performance
on the B and C instance sets. On the other hand, PACO-VMP
achieves solution quality close to best (or best) across all in-
stance types, without any sensitivity to the algorithm parame-
ters, and achieves better average solution quality than the other
ACO algorithm (OEMACS) in 15 out of the 18 instance cate-
gories. There is also a clear advantage for PACO-VMP in terms
of both scalability and execution time. The computational com-
plexity of PACO is superior to both OEMACS and GA1/2, and
the execution time of the parallel version is several orders of
magnitude lower in most cases. For the C1000 instances, the
most challenging instance set, PACO-VMP achieves the best
solution quality of all algorithms, in an average time of 2.873s,
while GA1/2 and OEMACS require several hours of CPU time
to reach a solution.

As noted in Section 4.2, the number of iterations used here
(50, consistent with [27]) is relatively small for ACO. We found
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that convergence was rapid, and the number of iterations was
sufficient. Figure 11 shows the mean solution quality aver-
aged over 10 runs of PACO-VMP on instances from the A1000,
B1000, C1000 sets. The hardest instances (those from the C set)
still show marginal improvement at 50 iterations, but are largely
converged. For the easier instances, the solutions clearly con-
verge much earlier than this.

Figure 11: Mean solution quality as a function of iteration averaged over 10
instances each from the A1000, B1000 and C1000 sets, using the PACO-VMP
algorithm.

5. Conclusions & Future Work

In this paper we presented PACO-VMP, a parallelized and
vectorized implementation of MMAS for solving the Virtual
Machine Placement problem. The method is several orders of
magnitude faster than two current state-of-the-art ACO solvers
(OEMACS and IGA-POP) while producing comparable or su-
perior results. Since virtual machine placement in the real world
is a problem in which reducing time to solution can have sig-
nificant cost benefits, the improved execution time performance
of PACO-VMP is potentially important.

While PACO-VMP is capable of solving the static VMP
problem, in reality this problem is rarely static. Real-world
cloud workloads have constantly changing demand, with Vir-
tual Machines being added and removed from the workload
constantly. As with the static VMP, execution time is vital for
dynamic VMPs in order to minimise time spent in an inefficient
configuration, and PACO-VMP’s positive results on the static
problem indicate that it could also be effectively used to solve
the dynamic problem. This is an area for further investigation.

The parameter tuning phase of our experiments revealed
that the performance of the algorithm is relatively insensitive
to the parameter governing the importance of pheromone in-
formation, further suggesting that analysing and improving our
pheromone definition may lead to better solution quality from
the underlying ACO mechanism. This is a potentially fruitful
area of further work.

Many assumptions were made in our implementation re-
garding the VMP problem, including that there will always be

as many PMs available as VMs, that performance doesn’t de-
grade when the PMs reach 100% capacity, and that CPU and
RAM are the only requirements. These assumptions are com-
monly made to simplify the problem solving process rather than
having to consider a vast array of additional variables. Another
potentially fruitful area to investigate is the use of additional pa-
rameters for the VMP problem, rather than just CPU and RAM.
Further work is required to investigate the inclusion of these ad-
ditional parameters.
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