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Abstract

Genetic oscillators are a major theme of interest in the emerging field of
synthetic biology. Until recently, most work has been carried out using
intra-cellular oscillators, but this approach restricts the broader applicability
of such systems. Motivated by a desire to develop large-scale, spatially-
distributed cell-based computational systems, we present an initial design
for a population-level oscillator which uses three different bacterial strains.
Our system is based on the client-server model familiar to computer science,
and uses quorum sensing for communication between nodes. Importantly, it
is robust to perturbation and noise. We present the results of extensive in
silico simulation tests, which confirm the feasibility of our design.
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1. Introduction

The growing field of synthetic biology (Benner and Sismour, 2005; Purnick
and Weiss, 2009; Serrano, 2007) has the potential to impact on many press-
ing areas of concern, such as health (Lu and Collins, 2009; Ro et al., 2006),
energy (Lee et al., 2008) and the environment (Sayler et al., 2004). By engi-
neering bacteria (and sometimes other types of cell), practitioners in the field
hope to take advantage of their inherent “biological nanotechnology”. This
engineering is generally achieved by modifying the natural transcriptional
mechanisms and regulatory activities of the bacterium of interest. Collec-
tions of bacterial cells have recently been successfully engineered to perform
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simple tasks, such as emulating light-sensitive film (Levskaya et al., 2005),
or generating simple patterns (Basu et al., 2005; Sohka et al., 2009). By
harnessing and controlling communication and synchronization mechanisms
found in such systems, we hope to engineer scalable, robust, fault-tolerant
bacterial devices based on the potential of using microbial consortia (Brenner
et al., 2008).

A significant amount of work on synthetic biology has concerned switches
(Gardner et al., 2000) and oscillators; here, we focus on the latter. Our
objective is to design a multi-strain bacterial community with autonomous
behaviour. We model our system on the “client-server” architecture famil-
iar to computer science (Berson, 1996), with a single central server and two
clients (one “red” and the other “green”). The task we define is that of os-
cillation; by engineering feedback between three different strains, web obtain
indefinite switching between “red” and “green” outputs.

In physics, an oscillator is a system that produces a regular, periodic “out-
put”. Familiar examples include a pendulum or a vibrating string. Linking
several oscillators together in some way gives rise to synchrony – for example,
heart cells repeatedly firing in unison, or millions of fireflies blinking on and
off, seemingly as one (Strogatz, 2003). Although synthetic genetic oscillators
date back to the early 1960s (Goodwin, 1963), these so-called Goodwin oscil-
lators were limited to single genes. The archetype of the multi-gene oscillator
is known as the repressilator, which is a “ring” of genes, each repressing its
successor (Elowitz and Leibler, 2000; Müller et al., 2006). A detailed discus-
sion of synthetic genetic oscillators is beyond the scope of this paper, but we
refer the reader to a recent extensive survey (Purcell et al., 2010).

Recently, genetic clocks have been coupled to produce synchronised os-
cillations at the level of a cell population (Danino et al., 2010). Following
on from earlier theoretical work (Garcia-Ojalvo et al., 2004; McMillen et al.,
2002), this paper demonstrated the feasibility of engineering population-level
oscillations. However, the population used was homogenous. In nature, there
exist bacterial communities known as biofilms (Davies et al., 1998), in which
hundreds of bacterial species form a robust and stable community through
signalling and cooperation. If the potential of synthetic biology is to be fully
realised, we believe that it is important to understand how to engineer com-
munication in mixed groups of cells. Two recent papers (Tamsir et al., 2010;
Regot et al., 2011) describe different approaches to multi-cellular computing,
each using a “compartmentalized” approach which restricts particular logical
operations to specific cell types. The benefits of such encapsulation are simi-
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lar to those obtained by the object-oriented model of computer programming,
and include (1) ease of implementation (only a small number of components
need to be introduced into any single cell type), (2) opportunities for module
reuse, and (3) the suppression of noise. As the conceptual link with computer
science is clear and useful, we continue the theme in the current paper, by
using the client-server model to illustrate our three-component oscillator.

Although the use of chemical signals leads to an inherent slowdown, thus
limiting the applicability of such modular systems, they may find applications
in domains where robustness or noise tolerance are important. In a commen-
tary article (Li and You, 2010), Li and You suggest that “division of labour
may be useful in metabolic engineering, in which intermediate metabolites
are produced by distinct cell populations and serve simultaneously as wiring
molecules. In this case, the fruits of the divided labour could be a useful
chemical or protein product, whose synthesis is collectively carried out by
the chemically wired populations.”

In this paper we first describe the architecture of our system. We describe
in silico component testing results, before demonstrating, using extensive
simulation studies, the feasibility of engineering multi-strain, population-
based oscillators. Our results suggest that such distributed computations
may become more common as the field of synthetic biology matures.

2. Models

2.1. A multi-strain bacterial oscillator

In this Section we describe in detail the structure of our population-based
client-server oscillator. This system achieves oscillatory behaviour (switch-
ing from red to green light output) in an autonomous, synchronous fashion.
The basic architecture of our system, depicted in Figure 1, is based on the
“client-server” principle of modern computing, in which distributed client
nodes communicate with a central server (Berson, 1996). In our system, we
have one server strain and two client strains. We extend the analogy by
considering the role of the buffer, a nutrient solution in which the cells live
and grow (in computing, a buffer is a region of memory in which temporary
data are stored). Signals are transmitted between client and server via this
“shared memory”, through the actions of sensing and deposition. Each cell
(“processor”) also has its own private internal “memory”, corresponding to
the space inside the membrane where local functions are performed. As each
bacterium is, in effect, an independent processor, the success of our design
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relies on our ability to make all processors react simultaneously to external
signals.

Figure 1: Overall system architecture. The figure shows a high-level schematic for the
server and two clients. (A1. . .A4): autoinducers. (a) Server activated by A2. (b) Green
client activated. (c) Server re-activated by A1. (d) Red client activated.

Quorum-sensing (QS) (Atkinson and Williams, 2009) has already been
studied extensively in the context of synthetic biology (Andrianantoandro et
al., 2006; Balagaddé et al., 2008; Garcia-Ojalvo et al., 2004). This mechanism
facilitates inter-bacterial communication via the generation and receiving
of signal molecules (Fuqua et al., 1994). Most importantly, it enables a
community-level response to emerge once a certain concentration threshold
has been reached. It is this mechanism that we will use as the basis of
the current study. In what follows, there exist only four different signals
or AHL molecules, labelled A1, A2, A3 and A4 (we use abstract labels for
now, but supply specific molecules in a later Section). Each cell/processor
reacts not to the absence or presence of a specific AHL signal, but to the
signal level, or concentration. For that purpose, some threshold, ∆, for input
responses is defined for each cell. If the output of cell Bi, when we denote by
O(Bi), activates some other cell Bj, and a signal level is denoted by |x|, we
assert that when |O(Bi)| ≥ ∆Bj then cell Bj is activated. In this way, our
model attempts to address one of the biggest problems inherent to single-cell
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circuits; stochastic expression noise (Murphy et al., 2010).

Table 1: Truth table for server strain. [A1. . . A4]: Autoinducers; S: Global output.

A1 A2 A3 A4 S
0 0 0 0 0
0 1 0 1 1
1 0 1 0 1
1 1 0 0 0

In Figure 1, we show a high-level schematic for the server and two clients;
the server is activated by either A1 or A2 (producing A3 and A4, respec-
tively); the green client is activated by A4, producing an “end-turn” signal,
A1, and green fluorescent protein, and the red client is activated by A3, pro-
ducing an end-turn signal, A2, and red fluorescent protein. We can therefore
see how this machine lies dormant until either A1 or A2 is added to the
nutrient, after which the system enters a period of oscillation (either red-
green-red-... or green-red-green-... respectively). This is achieved by the
server cells switching “turns” between red and green client cells. The in-
tended behaviour of the server is shown in Table 1; the important thing to
note is that it acts as an XOR (exclusive OR) function, since it is only active
if, and only if, it receives a single input (i.e., when only one of the clients
is active). If either both or none of the clients are active, then the server
is inactive (its internal circuit does not allow it to produce output); this is
fundamental to the correct operation of the system.

We now describe it in detail the internal structure of the client and server
bacterial strains. The first stage of this is to specify a candidate set of AHL
molecules, corresponding to the various signals within the system (i.e., A1-4).
These are listed in Table 2.

Table 2: Specific molecules corresponding to signals.

Signal System Molecule
A1 LuxI/R 3OC6AHL
A2 LasI/R 3OC12AHL
A3 Rh1I/R C4AHL
A4 SinI/R 3OC14AHL

We select four specific quorum sensing systems using three criteria: (1)
Sensitivity, (2) Bacterial class, and (3) Potential conflicts. In (Pai and You,
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2009) the four systems are grouped together in terms of their sensitivity; in
(Lerat and Moran, 2004) the systems are all characterised as being present in
particular divisions of specific Proteobacteria, and in (Steindler and Venturi,
2007) it is established that there exist no conflicts between the molecules
sensed by the different systems. We therefore assert that the systems we
have chosen are appropriate for our model, and that the possibility of error
due to cross-talk may be mitigated by the system design.

2.1.1. Server cells
The server cells lie at the heart of the system, as they are responsible

for implementing the core switching behaviour. In order to implement this,
we use two hybrid promoters (De Boer et al., 1983). These promoters are
regulated by two inputs (one inducer and one repressor), and careful design
allows them to be combined in a single device.

Figure 2: Server cell internal architecture. (A1. . .A4): AHL autoinducers; LuxR,
LasR: Quorum Sensing receptors; P1,P2: active transcription factors; pLuxR, pLasR:
inducible promoters; G1, G11, G2, G22: abstract structural genes; pH1, pH2: hybrid
promoters; RhlI, SinI: structural genes involved in autoinducer production.

The detailed structure of the server is depicted in Figure 2. For clarity
of description, we use the abstract molecular labels in our description. When
a server bacterium detects, via its membrane, that the concentration of A1
molecules exceeds the input threshold for that particular quorum sensing
(QS) system, the inducible promoter pLuxR is activated. As a result of this,
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the two downstream structural genes are expressed. The production of G1
molecules is used to stimulate a positive action in the hybrid promoter pH1
which, in turn, manages the expression of A3 molecules, using the gene RhlI.
At the same time, the expression product of the second gene, G11, represses
the hybrid promoter pH2 so the production of A4 is no longer possible due
to the inhibition of SinI. This general subsystem design is duplicated in order
for the server to be able to react symmetrically to each of its possible inputs.

2.1.2. Client cells

Figure 3: Client cell internal architecture. Left: green, Right: red. (A1. . .A4):
AHL autoinducers; SinR, RhlR: Quorum Sensing receptors; P3, P4: active transcription
factors; pSinR, pRhlR: inducible promoters; LuxI, LasI: genes responsible for autoinducer
production; gfp: green fluorescent protein; rfp: red fluorescent protein.

The detailed structures of the client cells are shown in Figure 3. These
cells have a much simpler design, due to the lack of synchronization require-
ments on clients within our model. In the case of the green client, when it
senses a sufficient concentration of A4 molecules in the environment to raise
the threshold of the corresponding QS system, it activates the internal path-
way that concludes with the expression of A1 molecules and the reporter,
green fluorescent protein (GFP). The first stage of this is the activation of
the inducible promoter pSinR which allows the transcription and translation
of the genes LuxI and gfp. LuxI is used to produce an “end-turn” signal
(in this case, A1), which is placed in the shared memory in order to notify
the server that the green light that corresponds to a half-oscillation cycle
has been satisfactorily expressed. The design of the red client is exactly the
same, only with LasI replacing LuxI, and red fluorescent protein (RFP )
being produced instead of GFP .
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2.2. Mathematical model

We first present the mathematical model, and then the results obtained
from its computational equivalent. When simulating a genetic network, the
key detail lies in the correct specification of the nature of connections be-
tween components (De Jong, 2002). Here, these connections are represented
by ordinary differential equations (ODEs). In the next model, transcrip-
tion and translation processes are combined into one single protein synthesis
procedure.

2.2.1. Server equations
Equation (1) represents the formation of the active transcription factor

which results from the binding, and later dimerization, of LuxR and A1.
The product of the molecules is dimerized by the parameter ρ, as well as
the final value is decreased by the degradation of the transcription factor.
Analogously, equation (2) describes the formation of P2.

dP1

dt
= ρP1 · [A1]

2 · [LuxR]2 − δP1 · [P1] (1)

dP2

dt
= ρP2 · [A2]

2 · [LasR]2 − δP2 · [P2] (2)

Equation (3) represents the rate of change of G1 over time. This expres-
sion product is controlled by the pLuxR promoter, which is induced by P1.
G1 degradation is given by the degradation rate δG1 . Equations (4), (5) and
(6) represent similar processes for the transcription factors G11, G2 and G22
respectively.

dG1

dt
= αG1 ·

[P1]h1

Kd1 + [P1]h1
− δG1 · [G1] (3)

dG11

dt
= αG11 ·

[P1]h2

Kd2 + [P1]h2
− δG11 · [G11] (4)

dG2

dt
= αG2 ·

[P2]h3

Kd3 + [P2]h3
− δG2 · [G2] (5)

dG22

dt
= αG22 ·

[P2]h4

Kd4 + [P2]h4
− δG22 · [G22] (6)
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Equation (7) corresponds to the rate of change of the A3 autoinducer as
it is produced by gene RhlI. The upstream promoter, pH1, is induced by G1
and repressed by G22. The final concentration is decreased by degradation.
In the same way, equation (8) denotes the rate of change of A4.

dA3

dt
= αA3 ·

[G1]h5

Kd5 + [G1]h5
· 1

1 + ( [G22]
βG22

)h6

− δA3 · [A3] (7)

dA4

dt
= αA4 ·

[G2]h7

Kd6 + [G2]h7
· 1

1 + ( [G11]
βG11

)h8

− δA4 · [A4] (8)

2.2.2. Green client equations
The next three equations represent the behaviour of the Green Client.

Equation (9) represents the formation of the complex P4 by the binding and
dimerization of SinR and A4. The concentration of the complex is affected
by a degradation rate, δP4.

dP4

dt
= ρP4 · [A4]

2 · [SinR]2 − δP4 · [P4] (9)

Equation (10) represents the rate of change of A1 autoinducer production
over time. The promoter that controls its gene is induced by P4. The final
concentration is decreased by a degradation rate, δA1 . The expression of GFP
is controlled by the same promoter, so it reacts in a similar way (equation
(11)).

dA1

dt
= αA1 ·

[P4]h9

Kd7 + [P4]h9
− δA1 · [A1] (10)

dGFP

dt
= αGFP · [P4]h10

Kd8 + [P4]h10
− δGFP · [GFP ] (11)

2.2.3. Red client equations
The next three equations represent the behaviour of the Red Client.

Equation (12) represents the formation of the complex P3 by the binding
and dimerization of RhlR and A3. The concentration of the complex is af-
fected by a degradation rate, deltaP3 .

dP3

dt
= ρP3 · [A3]

2 · [RhlR]2 − δP3 · [P3] (12)
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Equation (13) represents the rate of change of the A2 autoinducer over
time. The promoter that controls its gene is induced by P3. The final
concentration is decreased by a degradation rate, δA2 . The expression of RFP
is controlled by the same promoter so it reacts in a similar way (equation
14).

dA2

dt
= αA2 ·

[P3]h11

Kd9 + [P3]h11
− δA2 · [A2] (13)

dRFP

dt
= αRFP · [P3]h12

Kd10 + [P3]h12
− δRFP · [RFP ] (14)

2.3. System parameters

For all of the equations given, we use the parameter values shown in Table
3 to approximate the oscillatory behaviour. Those parameters corresponding
to the deterministic simulation are also used in the stochastic simulation
(adding the noise parameter ξ). We distinguish between the parameters
for which value has been directly obtained from the literature (denoted by
“Ob.”) and those whose value has been estimated (“Es.”). In both cases, we
supply an appropriate reference.

3. Results

We now describe the results of simulation-based experiments to investi-
gate the behaviour of both the individual components, and the client-server
system as a whole.

Our simulations were implemented using Python, which provides good
packages for cellular modelling (Olivier et al., 2002), and the standard ODE-
PACK package (Hindmarsh, 1983) for ODE solving. In order to obtain differ-
ent levels of detail we run three sets of simulations. The first (deterministic)
simulation investigates idealised differential behaviour, the second (stochas-
tic) simulation shows a more realistic approach, by adding noise to the equa-
tions, and the third set of experiments assesses the effects of inter-cellular
interactions.
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Table 3: Parameter values. “Ob.” = Obtained from; “Es.” = Estimated from. (*) This
concentration is fixed in the system as those proteins are constitutively expressed in cells.
!: Basu et al. (2005); ◦: Pai and You (2009); $: Brenner et al. (2007); •: Basu et al.
(2004); †: Paulsson (2004); ": Balagaddé et al. (2008).

Parameter Meaning Value Reference
Deterministic simulation
αG1 , αG11 , αG2 , αG22 Synthesis rates 1 µM min−1 (Ob.) !

αG2 , αG22 Synthesis rates 1 µM min−1 (Ob.) !
αA1 , αA2 , αA3 , αA1 Synthesis rates 0.18 µM min−1 (Es.) ◦

∆Det Q/S Threshold 10 µM (Es.) $ •
ρP1 , ρP2 , ρP3 and ρP4 Dimerization coeficients 0.5 µM−3 min−1 (Ob.) !

h1 · · · h7 Hill coeficient 1 (Ob.) !
h6, h8 Hill coeficient 2 (Ob.) !

Kd1 · · · Kd4 Dissociation constants 0.01 µM (Ob.) !
Kd5 · · · Kd10 Dissociation constants 1 µM (Ob.) !

δP1 , δP2 Protein decay 0.0692 min−1 (Ob.) !
δA3 , δA4 Protein decay 0.01 min−1 (Ob.) !

LuxR/LasR/SinR/RhlR∗ Concentration 0.5 µM (Ob.) !
βG22 , βG11 Repression coefficients 0.08 µM (Es.) !

Stochastic simulation
ξ Noise 8% (Es.) †

Discrete simulation
αAHL AHL synthesis rate 1010 molecules · hr−1 (Ob.) "
∆Dis Q/S Threshold 1015 molecules (Ob.) "

3.1. Deterministic simulation

In Figure 4(a), the concentration of output molecules is high if and only
if the molecule A2 is present at very low concentrations. If the value of A2 is
enough to produce a significant amount of P2, red-specific begin turn signals
will not be produced.

This set of simulations follows exactly the equations shown in previous
section. Figure 4(a) shows the Server intra-cellular behaviour. Since noise-
attenuation inside the server is one of the most important features of the
model, the graphs show the rate of change of A3 over time when A1 is
initialised to 0.5 µM (inside the server), while A2 changes in the interval [0.0
µM · · · 0.5 µM] (inside the server). All molecules are affected by degradation.

Figure 4(b) shows the behaviour of the Green Client when A4 is equal
to 0.5 µM (inside the client). The outputs, GFP and A1, are also decreased
by degradation. The different behaviour of the curves in the graph is due to
different rates of those genes in the equations.
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Figure 4: a) Server intra-cellular behaviour. Map visualisation. Fixed amount
of A1 = 0.5µM . Plot depicts production of A3 over time (min) while A2 changes. b)
Green client. Fixed amount of autoinducer A4 = 0.5µM inside the cell. All outputs are
decreased by degradation. A1: AHL autoinducer; GFP: green fluorescent protein.

These simulation results confirm, deterministically and in principle, the
correct functioning of the individual system components. We now describe
the results of full-system simulations to assess the overall behaviour of our
client-server model. First, we simulate the system comprising a single cell
from each strain, so that the level of AHL produced by one cell is enough to
fire the action of the next (threshold ∆Det). The results are shown in Figure
5(a).

Although this system is formed by only three bacteria - one for each com-
ponent - we may consider those results to be representative of a community in
which n bacteria of each strain are perfectly mixed. We observe the expected
pattern of oscillation, starting with the red client. The emerging behaviour
is understood in terms of the individual component simulations performed
before. At the beginning of computation, a significant amount of A1 is in-
troduced in the system, so that the server cell begins its computation. Then,
the sequence of autoinducers [A3, A2, A4, A1] is repeated as the cycle RFP
- GFP continues. In Figures 5(a-b), the initial amount of A1 is not shown
(only A1 synthetised by luxI).

In Figure 5(b) we induce unusual system behaviour by changing one of
the most important parameters. We modify the degradation rate of the
red off signal molecules so that it is removed one order of magnitude more
slowly from the system than the other signal molecules. The robustness of
the system when altering these decay parameters is crucial, as they will be
different in an in vivo experiment.
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Figure 5: a) Full-system simulation where 3 unique cells (one per each strain)
interact. The level of AHL produced by one cell is enough to fire the action of the
next. b) Full-system simulation. Decay of signalling molecules A2 initialised to
0.001.; In both figures: (A1. . .A4): AHL autoinducers; RFP: red fluorescent protein (red
client output); GFP: green fluorescent protein (green client output).

As we observe in Figure 5(b), the red client finishes its turn, but the
end-turn molecules degrade more slowly, and are therefore still present in the
shared memory. The server notices this red end-turn, and repeatedly yields
the turn to the green client until A2 molecules disappear. The system can
therefore adapt its behaviour to this new situation. We do not observe a
green-red-green-red· · · pattern, but instead see red-green-green-red· · ·. Im-
portantly, the system dynamically reconfigures the oslatexcillation pattern in
a manner that is completely consistent with correct architectural behaviour.

3.2. Stochastic simulation

We now provide stochastic simulation results. Beyond our deterministic
results, which may be described as the ideal behaviour, we need also take
into account the inevitable fact of random noise in genetic networks. In the
resulting SDEs (Stochastic Differential Equations), a Gaussian noise param-
eter (ξ) with the same value in every equation is added to the previous value
of the signal in each step of the integration (so that it is accumulative - this
error is also applied to the concentration of autoinducers in the shared mem-
ory). Future bench experiments will help to determine a specific noise value
for each reaction, based on the elements selected.

Figure 6(a) show the behaviour of the server with the new system of
SDEs. Its profile is more “fuzzy” than in the deterministic system, but it
still clearly reacts as an XOR gate. It is important to note, as this will
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Figure 6: a) Stochastic server simulation. Map visualisation. Fixed amount of A1
= 0.5µM . Plot depicts production of A3 over time (min) while A2 changes. b) Green
Client. Stochastic simulation. Fixed amount of autoinducer A4 = 0.5µM inside
the cell. All outputs are decreased by degradation. A1: AHL autoinducer; GFP: green
fluorescent protein.

be the key of the stochastic simulation, that the significant noise occurs at
the moment in which the signals are almost null. Every fluctuation there
will cause a quick change in the inputs of the server, and, as a consequence,
noise can occur. That is why the correct selection of genes G1, G11, G2 and
G22 and the promoters H1 and H2 is crucial. The main criteria to apply in
selecting those components must be the following: as the repression forces
in promoters are stronger, we will achieve a better deterministic behaviour
but, at the same time, we will make noise fluctuations more frequent in the
server. These are crucial considerations when designing our promoters. The
clients react as expected, and the results are depicted in Figure 6(b).

Using normal parameter values, as seen in Figure 7(a), the stochastic
simulation shows the expected behaviour. The difference we observe in this
graph, compared to the previous set of results, is that the oscillations be-
come quicker and the intersection between both colours bigger. A more
unexpected behaviour is shown in Figure 7(b), where the decay rate of A2
is again initialised to 0.001. Different runs will, of course, produce different
results, but the behaviour of Figure 5(b) is hard to find, although oscillation
hardly ever stops (approximately 1/10 times). In this graph we highlight the
ability of the system to overcome a difficult situation and return to a normal
oscillation: the intersection of lights at t ≈ 3000.
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Figure 7: a) Stochastic system simulation. 3 unique cells (one per each strain)
interact. b) Stochastic system simulation. Decay of signalling molecules A2 ini-
tialised to 0.001.; In both figures: (A1. . .A4): AHL autoinducers; RFP: red fluorescent
protein (red client output); GFP: green fluorescent protein (green client output).

3.3. Perturbation analysis

In order to demonstrate the robustness of the model, we perform a per-
turbation analysis by altering the initial values of the system and assessing
the impact (or otherwise) on system behaviour.

Figure 8 shows a collection of simulations of the system (10 deterministic,
10 stochastic). In each collection, a different initial set of parameters is tested.
Given a specific parameter X0 (from table 3), we obtain the new altered
parameter X1 by randomly choosing a new value between X0 − 0.2 ∗X0 and
X0 + 0.2 ∗X0. That is to say, we include flexibility in the initial parameters
of 20% of their original value. The parameters that do not change are:
LuxR, LasR, SinR, RhlR (constitutively expressed) and ∆Det (will vary only
qualitative behaviour, depending on the size of the population).

As we conclude from Figure 8, the quantitative behaviour of the sys-
tem changes depending on the initial conditions, but synchronisation is still
achieved. We emphasise that the main objective of the model is to demon-
strate the ability to synchronise “turns” of expression via a client/server
architecture. Thus, the amplitude, phase and period of the oscillatory cycles
may well vary from one implementation to another, but this is not quantita-
tively important in terms of the correct functioning of the device.

3.4. Discrete space simulation

The final set of simulations consider discrete spatial effects. We investi-
gate how the multi-strain machine behaves when the three strains (104 cells
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Figure 8: Perturbation analysis. Top two rows: deterministic simulations. Bottom two
rows: stochastic simulations. Only variations over time of RFP (red) and GFP (green)
are shown. X axis: time; Y axis: concentration.

per strain) are physically placed at different initial points. We therefore per-
form an agent-based simulation (Parunak et al., 1998), where each bacterium
is modelled as a mobile “agent” that can move in a liquid environment, so
that the three cell types may be found at different relative levels in differ-
ent parts of the in-silico world (represented by a 2D grid). Note that this
simulation considers only the production and degradation of AHL signalling
molecules (and not intra-cellular processes).

The dimension of the matrix is 100x100, with each “square” big enough
to allocate several cells at the same time (initially, '10 cells). The signalling
molecules are not explicitly represented, as this would be computationally
expensive. Instead, the values of the four different AHL concentrations are
stored in four buffers, and the area covered by AHLi is considered to be the
same as the area covered by strain i.

Initially, the server cells are placed randomly within the region of the
matrix bounded by x=[0. . .30] to y=[0. . .30], the green client cells in the
region bounded by x=[70. . .99] to y=[0. . .30], and the red client cells in the
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region bounded by x=[35. . .65] to [70. . .99]. In order to simplify matters, the
community is grown in a continuous culture.

All cells are simulated sequentially; every iteration corresponds to 1 hour,
the cells producing at every iteration the corresponding amount of AHL (only
if it is their turn) according to the previously-stated ratios (αAHL and ∆Dis)
from Table 3). During this step, every cell also moves across the world by
choosing randomly between the eight squares around it. In this way, square
is the distance they travel in an hour. As different motility speeds can be
obtained using different liquids, the relation between time/space is not a key
aspect of the simulation. The pseudo-code for a 700-hour simulation is:

iteration ← 0
WHILE iteration < 700

FORALL bacteriai
Move()
CheckEnvironment()
IF thresholdi = TRUE

ProduceAHL()
ENDIF

ENDFOR
DegradeAHL()
iteration ++

ENDWHILE

where the degradation function uses the parameter shown in Table 3.
The results of the simulation are shown in Figure 9. When the server

bacteria produces A4, those green clients that enter the area of influence of
the server bacteria sense the threshold of A4 autoinducers. At that moment,
A1 is produced only by those client cells, and only the server cells in the
area of the latter will sense the threshold of A1 when the concentration of
those molecules exceeds the predefined value. The number of cells involved
in this threshold sensing will increase during the simulation, as the strains
are increasingly mixed.

The initial number of cells placed in the grid is much higher than the
number needed to produce the enough AHL molecules to fire any thresh-
old. Therefore, the machine does not need to be perfectly assembled (i.e.,
components are perfectly mixed) in order to start functioning.
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Figure 9: The colony at several stages of the simulation. (Top) All cells. Red client
is central, server bottom-left, green client bottom-right. (Middle) Cells that express GFP.
(Bottom) Cells that express RFP.

One remarkable feature of this simulation is the speed, or frequency, of
oscillation cycles in the community. Nothing happens in the first 200 hours,
until the green client cells make contact with the server cells (initially A2
molecules are introduced into the community). It is important to notice
that the captures shown in Figure 9 simply represent the evolution of the
community, not the period of the oscillatory cycles (between those steps
there are several cycles).

While the simulation runs, the cycles occur much more often until the
point around 600-700h, where the community is almost perfectly mixed, and
the results - in terms of period of oscillation - are equivalent to those shown
in previous simulations. This is due to the fact that when the population
is mixed there are more cells expressing autoinducers, and thresholds are
reached sooner.

As the local density of cells changes in the simulation, we can clearly see
the effect of colony size in the behaviour of the system. Basically, it affects
the time that the colony needs to fill the buffer in a specific local area. Along
with the synthesis rate of autoinducers, it will determine the period of the
cycles.
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4. Discussion

In this paper we presented a design for a population-based cellular oscilla-
tor, which uses quorum sensing-based signalling within a client-server model.
Simulation studies of our design suggest that it is realistic and robust to fluc-
tuations in environmental conditions. Such systems will become increasingly
important for synthetic biology, as the field seeks applications in (for ex-
ample) distributed bio-sensing or tissue engineering. As more multi-strain
devices appear, this kind of synchronisation will become increasingly impor-
tant. The light oscillations in the proposed design are a proof of principle to
test the client-server architecture. Future work will focus on refinements of
the model, as well as its experimental validation.
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