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The accuracy and believability of crowd simulations underpins
computational studies of human collective behaviour, with
implications for urban design, policing, security and many
other areas. Accuracy concerns the closeness of the fit between
a simulation and observed data, and believability concerns the
human perception of plausibility. In this paper, we address both
issues via a so-called ‘Turing test’ for crowds, using movies
generated from both accurate simulations and observations of
real crowds. The fundamental question we ask is ‘Can human
observers distinguish between real and simulated crowds?’ In
two studies with student volunteers (n = 384 and n = 156), we
find that non-specialist individuals are able to reliably
distinguish between real and simulated crowds when they are
presented side-by-side, but they are unable to accurately classify
them. Classification performance improves slightly when
crowds are presented individually, but not enough to out-
perform random guessing. We find that untrained individuals
have an idealized view of human crowd behaviour which is
inconsistent with observations of real crowds. Our results
suggest a possible framework for establishing a minimal set of
collective behaviours that should be integrated into the next
generation of crowd simulation models.
1. Introduction
The formal study of human crowds dates back to before the
French Revolution [1], but understanding collective behaviour is
more urgent than ever before, as populations migrate to high-
density urban centres, protests become more organized (and
perhaps more common) and increasing numbers of individuals
pass through large-scale transportation hubs [2]. A number of
computational techniques exist to study the dynamics of crowd
behaviour, but the most commonly used is simulation [3].

Crowd simulations (generally, but not exclusively, using an
agent-based approach) are now employed in many different
domains, from events planning and management [4], to urban
design [5], and incident response and analysis [6,7]. By studying
flows of people en masse, and their interactions with the
environment and with one another, researchers aim to better
understand human collective social behaviour, design more
effective and enjoyable public spaces, and improve levels of
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safety, security and well-being [8]. An important open question concerns the believability of crowd

simulations in terms of their macroscopic properties. Put simply, do simulated crowds appear ‘lifelike’
in terms of their overall behaviour? To answer this question, we took a number of observed crowds
moving through a space, and constructed simulations of them that accurately matched the statistical
properties of the real crowds (in terms of the number of individuals, clustering, exit choice and so on).
We then presented the observed and simulated crowds (both side-by-side and individually), and asked
participants to identify the real crowds.

The rest of the paper is organized as follows: in §2, we briefly review related work on crowd
simulation and collective behaviour; in §3, we present our ‘Turing test’ for crowd behaviour, and in §4
we give the results of experimental trials. We conclude with a brief discussion of the implications of
our findings.
l/rsos
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2. Background
The study of human crowd dynamics [9] is motivated by the desire to understand and predict the
behaviour of individuals en masse, and encompasses a diverse range of crowd types, from large,
mainly static crowds at sporting events or concerts [10], to transitory and flowing crowds, such as
those found in train stations at rush hour [11], or at religious events such as Hajj [12]. As urban
centres grow in size (the United Nations predicts that, by 2050, 68% of the global population will live
in cities [13]), we will need to understand and mitigate the impact of crowds on infrastructure, safety,
security and quality of life [14]. A number of computational techniques exist to study the dynamics of
crowd behaviour, but the most commonly used is simulation [3].

Early attempts to understand crowd behaviour were rooted in the physical sciences, using metaphors
and mathematical tools from fluid dynamics [15], and modelled crowds at the macroscopic level (i.e.
without considering individuals) [16]. Subsequent work used an entity-based approach, which treated
crowds as individual ‘particles’ [17,18], along with the agent-based methodology, in which individuals
are treated as semi-autonomous actors [19]. As crowd simulations have become used more frequently,
attention has become focused on issues of accuracy and believability. Here, we define the accuracy of a
simulation in terms of its validity [20–23]; how closely does the output of the model match data
obtained in the real world? It is straightforward to obtain statistical properties of simulation outputs
and compare these to the properties of real-world crowds, and that is the approach we take in this paper.

The issue of believability is subtly different, and concerns the human perception of whether or not a
crowd’s behaviour is plausible. We emphasize that we do not concern ourselves with ‘cinematic’
believability (that is, whether or not the rendering of a crowd scene is photo-realistic). Rather, we are
interested in whether or not observers are capable of detecting characteristic patterns of behaviour that
are specific to real crowds, and which may not be present in simulated crowds.

Our testing frameworkmay be thought of as a limited form of the famous ‘Turing test’, named after Alan
Turing, and described in his landmark paper on artificial intelligence [24]. Turing proposed that if a human
observer was unable to distinguish between another person and a machine designed to produce human-like
responses inaconversational setting, then themachinewouldbedeemed tohave ‘passed’ the test. This typeof
test has been proposed for biological modelling [25] and artificial life [26] as a way of capturing and
interrogating lifelike properties of artificial systems, and assessing the completeness and validity of a
model. We base our approach on a related Turing test for collective motion in fish [27].

Our overall aim is to explore how a Turing-like test may be used to examine assumptions and
preconceptions about the behaviour of human crowds, and to establish the features of real crowds
that must be emulated by a simulation in order for it to be valid and/or ‘pass’ the test. This is
motivated by a widely acknowledged need for crowd simulations to include more ‘lifelike’ features
derived from individual and social psychology (such as group-level behaviours and indecision)
[28–30], which are generally not included in software packages, and which give rise to rather
unrealistic or ‘robotic’ patterns of behaviour at the population level. Our experiments represent a first
step towards this, by using the Turing test framework to establish distinguishing features of real
crowd behaviour.
3. Methods
Our experimental methodology was based on that of [27], but with in-person (as opposed to online)
participants. The first trial tested the ability of participants to distinguish between real and simulated
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Figure 1. Diagram of Edinburgh Informatics Forum (ingress and egress points numbered).
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crowds, and the second trial tested the ability of a different set of participants to identify real crowds in a
sequence of movies.

For the first trial (n = 384), we showed all participants six pairs of randomly ordered movies of 30s
duration (for each pair, both movies were shown simultaneously, side-by-side). In each pair, one
movie showed the movement of a real crowd, and the other showed the output of a crowd simulation
with the same statistical properties as the real crowd (see §3.5 for more information). Both real and
simulated crowd movements were displayed using the same rendering method, and participants were
asked to specify on a form which of each pair they thought represented the movement of the real
crowd. For the second trial (n = 156), we used the same set of movies as in the first trial, but this
time they were individually presented, in a random order, and participants were asked to classify
each movie as either ‘Real’ or ‘Simulated’. In order to prevent possible bias, both sets of participants
were disjoint.
3.1. Real pedestrian motion dataset
We used data on real pedestrians from the University of Edinburgh School of Informatics [31]. This
public dataset, captured in 2010, contains over 299 000 individual trajectories corresponding to the
movement of individuals through the School Forum, and is one of the largest open datasets of its
type. A diagram of the Forum space is shown in figure 1. The Forum is rectangular in shape
(measuring approx. 15.8 × 11.86 m), has eleven ingress/egress points, and is generally clear of
obstructions. Images were captured (9 per second) by a camera suspended 23m above the Forum
floor, from which individual trajectories were extracted and made available (extraction was performed
by Majecka [31]). We note that only the trajectories have been made publicly available, and not the
original video recordings, for ethical and practical reasons (the image files require several terabytes of
storage). However, this dataset has been used in a large number of studies of pedestrian movement/
tracking, including [32–34], importantly, none of the individuals whose trajectories were captured
were actively participating in movement studies; the trajectories, therefore, are as close to ‘natural’ as
possible (i.e. they have ‘behavioural ecological validity’ [33]).

In what follows, we use the term ‘clip’ to specifically refer to a time-limited sequence of trajectory
data (whether taken from the Edinburgh dataset or from the output of a simulation), as opposed to a
movie visualization. We wrote a utility to search the Edinburgh dataset and extract clips of a specific
duration containing a specific number of individuals. This allowed us to ensure that the ‘real’ and
‘simulated’ crowds contained the same number of individuals for any single comparison.
3.2. Simulation calibration
In order to calibrate our simulation (and, later, to perform statistical analysis), we selected 20 clips at
random from the Edinburgh dataset (each of 60 s duration), and calculated the average walking speed
of pedestrians observed traversing the Forum. The distribution of speeds is shown in figure 2, with a
mean value of 1.17 m s−1. When we simulated these scenarios (see next section), the mean speed of
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Figure 2. Distribution of walking speeds for pedestrians observed in Edinburgh Informatics Forum.
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agents was higher (1.63 m s−1), due to the fact that simulated agents were rarely impeded, did not
encounter bottlenecks, and were free to accelerate up to their maximum speed. However, as we will
see from our results, this did not affect the perception of the simulated crowds.

For the comparison experiments, we randomly selected six clips taken from the Edinburgh dataset
(the number of clips is the same as in [27]); each was of 60 s duration, and the number of individuals
in a clip ranged from 104 to 194 (with an average of 139). For each clip, we extracted the entry/exit
point distribution and the entry time distribution for all individuals. Because we know the locations
and dimensions of every ‘doorway’ in the forum, we were able to easily calculate the entry and exit
points for each trajectory in a clip, based on the first and last detected locations. This allowed us to
initialize our simulations with the same distributions, ensuring that the runs closely matched the
macroscopic properties of the real-world observations (while leaving room for the microscopic
differences in which we are interested). We also calculated the average velocity of individuals in each
clip, and used this to scale the clip’s length (by modifying the video playback speed) to account for
variability in camera capture rate, thus normalizing the velocity of individuals relative to expected
walking speed [35].
3.3. Simulation construction
In order to produce the simulations to accompany each Edinburgh clip, we simulated pedestrian
movement using the Vadere package [36]. This package is open-source, which means that (unlike
commercial software) its movement models are open to inspection, and it also allows for easy
exporting of simulating pedestrian trajectories (which is important when we consider that we must
use the same rendering engine for both real and simulated videos).

A crucial component of the simulation is the crowd motion model. This defines the rules of interaction
between individuals (e.g. avoidance), and between individuals and their environment (e.g. repulsion
from walls and physical obstacles), as well as route choice behaviour and differential walking speed.
Many different crowd motion models exist [37], but perhaps the most commonly used type is based
on social forces. Inspired by the fluid flow paradigm of Henderson [15] and others, Helbing and
Molnar’s social force model (SFM) [38] is a microscopic, continuous model which uses ‘attractive’ and
‘repulsive’ force fields between individuals (and between individuals and their environment) to guide
movement. The SFM provides the base movement model for a number of pedestrian simulation
packages, including FDS + Evac [39], PedSim [40], SimWalk [41] and MassMotion [42], and it has been
used extensively in movement research. Additionally, the SFM has been validated using real-world
data [20,23], and the comprehensive review of [37] recommends its use in pedestrian movement
studies. For all simulations, we used the pre-supplied Vadere template for Helbing and Molnar’s SFM,
with default attributes and parameters (listed in table 1).

We added small amounts of noise to the simulated trajectories in order to replicate noise in the real
crowd data. As the Edinburgh individuals were detected by an overhead camera running at 9 fps,
occasional faulty detections caused very short-term errors in the extracted trajectories. Once rendered,
this caused individuals to appear to rapidly ‘flick’ between two headings. As we had no reliable way
to quantify the (by inspection, small) amount of noise in the trajectories, we adjusted this by eye until
the apparent noise in the simulated data matched the noise level observed in the real data. At any
time-step, a simulated agent had a 15% chance of temporarily ‘flicking’ their heading by a randomly



Table 1. Vadere simulation model parameters.

parameter value

ODE solver Dormand–Prince method

pedestrian body potential 2.72

pedestrian recognition distance 0.3

obstacle body potential 20.1

obstacle repulsion strength 0.25

pedestrian radius (m) 0.2

pedestrian speed distribution mean (m s−1) 1.4

pedestrian minimum speed (m s−1) 0.4

pedestrian maximum speed (m s−1) 3.2

pedestrian acceleration (m s−2) 2.0

pedestrian search radius (m) 2.0

Figure 3. Single frame render of an example crowd.
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selected value up to 45° (without changing their trajectory). Importantly, as we will see from the results,
the addition of this noise had no effect on how the simulated crowds were perceived.

A second artefact of inaccurate detections was that some trajectories had missing sections for several
time steps; once rendered, these individuals would temporarily disappear from the frame and then
reappear. To fix this, we automatically detected such situations and interpolated coordinates for the
missing time-steps when parsing the Edinburgh dataset. We also increased the number of frames per
second of both sets of trajectories (real and simulated), from 9 to 72, by interpolating coordinates. This
enabled smooth video playback for the purpose of comparisons. Finally, pedestrian trajectories
sometimes include ‘swaying’ motions resulting from the gait of individuals; however, we did not see
this in the Edinburgh data.
3.4. Crowd rendering
The trajectories of both the simulated and real individuals in each pair of clips were rendered in a
uniform fashion, using a tool coded in Java. This allowed us to produce ‘top-down’ visualizations of
both real and simulated clips that were identical in appearance, with individuals represented as filled
circles, and headings depicted by an arrow (figure 3).

The use of abstract, simplified shapes and a top-down, two-dimensional presentation is relatively
common in crowd studies [10,43–47], although three-dimensional representations are also used
[48–51]. We decided against using ‘realistic’ body shape rendering and three-dimensional views, as
initial tests suggested that such a presentation scheme (using animated avatars) would actually
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distract viewers from the main aim of the experiment, which was to look for patterns of behaviour in the

crowd. Additionally, at least one study has shown that crowds that are viewed from the top down are
perceived as being just as realistic as those viewed from eye level [52].

3.5. Simulation validation
In order to assess the accuracy of our simulations, we calculated several statistical properties for both
their outputs and the Edinburgh observations on which they were based. We used two metrics (as in
[27]); polarization and nearest-neighbour distance (NND). The first metric is particularly useful for
describing the existence of large groups who might be moving together along the same heading (e.g.
from a lecture towards an exit), while the second metric is used for estimating overall crowd density.

Polarization measures the level of ‘order’ in a crowd, in terms of the heading alignment of members.
Polarization is zero when the crowd is completely disordered (everyone is pointing in a different
direction), and has a maximum value of 1 when all members of the crowd have the same heading

w ¼ 1
N

Xi¼1

N

exp (iui)

�����
�����

* +
, (3:1)

where N is the number of individuals in the frame, i is the imaginary unit, and θi is the heading of each
individual.

Nearest-neighbour distance (NND) measures the level of ‘clustering’ in a crowd. The average NND
for a single ‘frame’ (derived from either the real dataset or the simulation) is calculated from the sum of
nearest-neighbour distances of all N individuals

n ¼ 1
N

Xi¼1

N

di, (3:2)

where di is the nearest neighbour distance between point i and the closest individual in the frame, as
calculated by the standard distance formula

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 � x1)

2 þ (y2 � y1)
2

q
: (3:3)

In order to confirm that we did not introduce implementation-specific bias by choosing a specific
software platform, we compared the outputs of Vadere and JuPedSim [53], an alternative open-source
simulation package. We used each package to simulate the 20 real crowd clips mentioned in the
previous section, and calculated average NND and polarization over 20 runs for each. The same
statistics were then calculated for the real clips (figure 4).

These results confirmed that crowd simulations in Vadere and JuPedSim display similar properties in
terms of both NND and polarization, so we selected Vadere as a representative example of crowd
simulation packages in general (other reasons for selecting Vadere included the fact that it is written
solely in Java, and JuPedSim is built from a combination of C++ and Python, and we found the
exporting of agent trajectory data to be more straightforward in Vadere).

Importantly, the statistical properties of the simulations also matched the general properties of the real
crowds, which confirmed that they are essentially indistinguishable in those terms. In figure 4, we notice
a slight difference between the real and simulated crowds in terms of polarization; the real crowds are
generally slightly more closely aligned than the simulated crowds, but this difference is of the order of
2%, and we do not believe that this is significant enough to introduce any perceptible difference.
Interestingly, the simulation package (as used here) does not use explicit groups of individuals, so the
difference we see may be due to the occasional occurrence of polarized groups in the observed data
(for example, when a number of individuals all leave a lecture theatre at the same time).

3.6. Trial protocol
We performed two trials; the first trial tested the ability of participants to identify the real crowds when they
were presented alongside the simulated crowds, and the second trial tested the ability of participants to
classify crowds as either ‘Real’ or ‘Simulated’. We define ‘score’ in terms of correct identification/
classification of the real crowd; so a score of zero means that a participant failed to identify/correctly
classify any of the real crowds. All trials took place at the beginning of a class, for which prior
permission was obtained from the tutor. Students were informed about the nature of the experiment,
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Figure 4. Crowd simulations/real crowd statistical comparisons: NND (a) and polarization (b) as a function of crowd size. The outputs
of both simulations have statistical properties that are close to those of the real crowds.
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and told that they were under no obligation to participate. Answer sheets were distributed, which consisted
of a simple numbered list of tick-boxes. Participants were asked to optionally specify their age and gender.
At the end of the trial, participants were also asked to provide some optional narrative notes on any
distinguishing features they noticed that allowed them to tell the real crowd from the simulated crowd.
Each trial (from initial set-up to collection of answer sheets) took around 10min.
4. Results
4.1. Identification trial
We recruited 384 undergraduate students from Northumbria University, distributed over nine groups
taken from a mixture of computer science and engineering courses. Of the participants who supplied
their details, the gender distribution was 78.83% male, 18.66% female, 2.5% non-binary/other and the
average age was 20.7 (we exclude one outlier age value of 71, corresponding to a student’s reader).

For each pair, the real and simulated videos were randomly assigned to position A (left) or B (right),
and these were combined side-by-side into a single video. Individual videos did not ‘loop’, and were
made up of the first 30 s of the real and simulated crowd clips in each pair. The total duration of the
video, showing a total of six comparisons, was 3min 18 s (including a 3 s pause between each pair).
The video is available at http://drives.media/google857, and the real crowds are A, A, B, A, B and B
(individual videos are also made available in the electronic supplementary material).

http://drives.media/google857
http://drives.media/google857
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The mean score for participants, across all comparisons, was 1.6 out of 6 (26.7%). That is, participants
performed significantly less well than if they had guessed at random. The overall distribution of scores is
shown in figure 5, overlaid with the expected binomial distribution (as each comparison is a binary
choice, we show this to illustrate the expected distribution of scores if selections were made at random).

If the real and simulated crowds were genuinely indistinguishable (that is, the best strategy would be
no better than random guessing), then we would expect roughly 3% of participants (around 12 people) to
either guess none correctly, or to guess all six correctly. What we actually found was that over 40% of
participants (154 individuals) obtained a score of either zero or six. That is, those individuals were
able to correctly partition all six pairs of videos into two sets. This answers, in the affirmative, the
question concerning the ability of individuals to distinguish between real and simulated crowds, even
when they have very similar statistical properties.

However, a highly striking result is that the most common score, by far, was zero. A significant
proportion of participants (36.46%) failed to identify a single real crowd. Only 3.65% of participants
obtained a perfect score of 6. The important implication of this is that participants were reliably able
to partition videos along the lines of ‘real’/‘simulated’, but were unable to correctly classify (that is,
label) the crowds. This is a much stronger version of the result obtained in [27], where participants
were able to tell real fish from simulated fish, but were not necessarily able to identify the real fish.

We now briefly explore secondary features of our findings for the first trial. The results for each
comparison are shown in figure 6, which we present in terms of the proportion of participants who
correctly selected the real crowd. These results show that pair 6 presented the strongest challenge to
participants, and pair 2 was considered the least challenging. Overall, no clear trend emerged in terms
of differential challenge across comparisons.

In terms of variation across groups (figure 7), Group 1 (engineering mathematics students) obtained
the most correct identifications, with an average score of 2.46. Group 9 (computer science students) had
the fewest correct identifications, with an average score of 1.08 (the remaining groups were all computer
science students).
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4.2. Classification trial
In order to check for bias that might be introduced by showing movies side-by-side, we performed a
second trial (with different participants) using exactly the same movies as before; however, this time,
the movies were presented individually, in a randomized order, and participants were asked to classify
each one as either ‘Real’ or ‘Simulated’. For this additional trial, we recruited 156 engineering Masters
students from Northumbria University, taken from a single unit cohort. Of the participants who
supplied their details, the gender distribution was 93.59% male, 3.85% female, 2.56% non-binary/
other and the average age was 23.77.

For this trial, the mean score was 4.47 out of 12 (37.25%; again, much worse than random guessing).
The distribution of scores is shown in figure 8, and the success rates for individual movies are shown in
figure 9 (the classification order was R(eal), R, R, S(imulated), S, S, S, R, S, R, R, S).

To summarize, we found that the identification task was considerably more difficult when videos
were presented side-by-side, as opposed to individually. However, neither mode of presentation
allowed participants to perform better than random guessing. Taken together, the results of both trials
suggest that off-the-shelf simulations ‘fail’ the crowd Turing test, in that they actively ‘mislead’
untrained experts into believing that real crowds are actually simulated, and vice versa. We now
consider why this might be.
4.3. Narrative findings
In this section, we analyse the free text supplied by participants. We focus, in particular, on the large
number of participants in the first trial who scored zero, as (a) they consistently misidentified the real
crowd, and (b) the number of comments supplied by participants in the classification trial was
relatively low, and they were generally consistent with the comments made by participants in the first
trial. We highlight themes and specific comments that may shed light on the assumptions and
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preconceptions held by these individuals, that led them to consistently ‘flip’ the real and simulated
crowds in their perception.

The first theme that emerged concerned rapid or ‘random’ changes of movement in the real crowd,
which many participants incorrectly attributed to the simulated (fake) crowd. Versions of this
included ‘Fake changed direction too quickly’, ‘Fast change suggests fake’, ‘Generated crowd had too
much random movement’, ‘Real seemed to change direction gently’. Although the average speed of
the simulated agents was higher than that of the real people, participants singled out rapid movement
in the Edinburgh (i.e. real) videos as indicative of artificiality (when, in fact, the real people moved
more slowly). Overall, 72 participants mentioned a variant of this type of observation. The underlying
assumption here is that real people move smoothly, at a uniform speed, and do not tend to deviate
much from their chosen path.

A second common theme concerned avoidance; many participants incorrectly assumed that real
people would avoid close contact with one another, whereas the simulated individuals would
‘overlap’ or collide. Representative quotes included ‘Simulated people collided, real crowds avoided
each other’, and ‘People overlapping’. In reality, the opposite is true, as the real dataset contains
multiple instances of individuals coming into close proximity. Moreover, the social forces model
explicitly tries to keep individuals apart unless close proximity is unavoidable, so the behaviour
(distance keeping) that participants attributed to real people was actually an in-built feature of the
simulation. This theme was mentioned by 22 participants.

Perhaps the most profound observations concerned perceived intentionality and group-level behaviour;
many participants believed that ‘On the whole, people have relatively smooth and intentional paths’
(this was actually a feature of the simulation), ‘Real crowds don’t really stand around’ (stationary
groups were only present in the real dataset), and ‘The real ones knew where they were going’ (this
was actually a function of the simulation’s path choice algorithm). Variations on this theme were
mentioned by seven participants. The interesting thing here is that participants (incorrectly) ascribed
clear human intentionality and purpose to the simulated agents (Real crowds move more
purposefully), and failed to acknowledge it in the actual humans that were observed.

Overall, we found that participants believed that individuals in crowds are orderly, purposeful,
respectful of personal space, and consistent and uniform in their speed and direction. In fact, all of
these characteristics were features of the simulation. Participants also failed to recognize features of
real crowds, such as rapid changes in speed or direction, close proximity of individuals, and
stationary groups/individuals, all of which were discounted by participants as being ‘glitchy’ or
‘unrealistic’.
5. Conclusion
In this paper, we presented a Turing test for crowds that allowed us to investigate issues of believability
in crowd simulations by comparing them with visualizations representing data obtained from real
pedestrians. We performed trials with over 500 university students, and found that, while the
students were generally able to discriminate between ‘real’ and ‘artificial’ crowds, they were unable to
correctly label them.
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We acknowledge several potential limitations of our study; the use of students as test subjects is the

subject of ongoing debate [54], and the computer science background of many of the students (and the
gender imbalance) may have biased our results. It may be the case that our students have become
conditioned to make certain assumptions about how crowds behave from playing games that use a
relatively unrealistic crowd model. However, this is merely speculation on our part. Nonetheless, an
important future development of this work will be to re-run the trials using experts in crowd dynamics,
to find out whether they are better placed to identify the real crowds (based on our findings, we would
recommend a sequential rather than side-by-side presentation mode). This is entirely consistent with
Harel’s expectation of how a biological modelling Turing test might work; ‘… our interrogators can’t
simply be any humans of average intelligence. Both they and the … people responsible for “running”
the real organism and providing its responses to probes, would have to be experts on the subject matter
of the model, appropriately knowledgeable about its coverage and levels of detail’ [25].

If (as we might expect) the experts are able to reliably identify the real crowd, then this immediately
suggests a mechanism for ascertaining the minimal set of crowd features that are necessary to ‘pass’ the
test. If, for example we identified that ‘group-level movement’ was a ‘flag’ for the experts, we might
include such a behaviour in the simulation and re-run the trial with a second group of experts. If the
experts are then less able to tell the difference between real and simulated crowds, then we might
conclude that group-level behaviour constitutes an important feature that should be included in
simulations. This would represent a formalized methodology for implementing a number of
recommendations that have been recently made by a number of crowd scientists, who call for the
integration into software of a wider range of psychological and interpersonal processes [28–30]. These
recommendations reflect a pressing need to revisit physics-based models of crowd behaviour which,
though they may generate macroscopic behaviour that is reasonably realistic, fail to capture the
inherent ‘messiness’ and unpredictability of real human crowds.
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